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The design of a class of special purpose computin_ machines

which compute by counting is systematically developed. The basis

of the design philosophy is to limit the basic building elements to

three fundamental units and to develop the method of synthe§is such

that these three building elements are represented as operational

units. In particular, the three basic building elements are (1) the

binary rate _zl_iplier which is a means of scaling down a pulse

stream to some specified fraction, (2) the counter, and (5) the

anti-coincidence circuit which is a means of seA_rating _ulses

arriving at the counter simultaneously. The computational errors;

i.e., rounding-off error and truncation error, introduced into the

machines when these elements are treatea as operational units are

studied in detail. The method of synthesis is explicitly stated

and a wide variety of machines obtained directly from this synthc-

sis are presented. Finally, a series of machines is presented for

interpolation and extrapolation of a function which is available

only as empirical data.
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CHAPTER I

PRINCIPLE DESIGN _S

Introduction

Computer.sare usually divided into two broad catagories, analog

and digital. Analog computers represent variables as physical quan_
°

titles. Th_ solution of a problem in an analog comFater is attained

by constraining a physical model of the problem to be solved: and

measuring the varlables. The ability to prob,'ama wide variety of

problems is achieved by having functional components available (e.g.,
,l

adders, multipliers, integrators)and interconnecting them b.vmeans

of a l_tchboard. The resulting interconnec_ion is scaled to matca
i

the desired ....'_....e_u_v_. _ the other hand, digital eom___ter_represent -

v._riablesas alscrete quantities. The usual method of solution of a

_;_ problem ina digital computer is attained by sequencing a sequenc• of

_ instructions through the fetch-execute cycle of its control unit.

Ano_her class _:_'digital computers, known as incremental computers,

combine the parallel functional simplicity_a_d s_ed of analog com-

puters with the ability of attaining compatational precision which is.

• not dependent on precision of measurements. Such computers attain a

speed advautage ovcr c0nvcntional __. purpose _._=_,,_........_o by *_ran_-

mltting and processing only p._rtialwords in a number Of parallel

•arithmetic organs rather than the •wholewor_s needed by the fetch-•

execute cycle. Moreover the _g_l nature of these comFat_rs pez"_-it

@
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the problem sol.ltioo to be repeated exactly and therefore does not

possess the drift characteristic of analog computers. Beyond a doubt

the incremental computer which has found the most interest in the

literature is the digital differential analyzer; i.e., DDA. This

computer can be viewed as a digital analogy of an analog coml_ter.

The usual design practice in each of these machines is to permit them

to solve a large spectrum of problems. When a computer need arises

for a special purpose application, this versatility is felt as a cost

factor.

A class of incremental techniques which has been used in real

time control is a class known _n the indnstry as countup-countdown

techniques. The basis of these techniques is to represent data by a

unitary code. For example, the number 28 is represented by 28 pulses.

A function may be represented by counting the sequence of pulses in a

forward-backward counter or converting them directly into an analog

quantity (e.g., by a stepping motor) for analog processing. Conse-

quently, when a seal time application deals with contlnuous-smoothly

varying functions, countup-countdown techniques offer a simp]iclty

and economy of hardware which is hard to beat with Coml_ting systems

designed to handle a large spectrum of problems.

The purpose of this thesis is to investigate countup-countdown

techniques with the objective of demonstrating that they can, in

fact, be used to genarate a wide variety of non-trlval functions.

This will be done by displaying a circuit which will generate each

function. However, since _he techniques upon which we base this

thesis are described in the literature only in an ad-hoc manner

1966018643-011
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(Refs. 4, 5, 9, i0, 12, and 19), we will be specific as to which cir-

cuits we will permit as basic building elements. In particular, the

_andamental units which we will permit are (1) the binary rate multi-

plier (abbreviated BRM) which is a means of scaling down a pulse

stream to some specified fraction, (2) the counter, and (3) the anti-

coincidence circuit which is a means of separating pulses arriving

at the counter simultaneously. In order to strengthen our argument

we will avoid completely the explicit use of adders and subtractors.

A succinct recapitulation of the purpose of this study is to system-

atically develop and demonstrate the versatility of techniques based

on counting for solving sophisticated and practical special purpose

computer design problems_

_ method of synthesis will be to describe the principle

building elements as operational units and then proceed by opera-

tional techniques to show how to fabricate the various machines. In

particular, a first order difference equation can be represer_ted by

a counter, and approximate integration can be attained by using a

counter in cascade with a binary rate multiplier. These principle

design elements are described in this chapter.

It is to be expected that the results obtained by operational

means will deviate from the actual results due to the finiteness of

the machine and the approximation implied by our synthesis. A dis-

cussion of these aplm'OXlmations is presented in CHAPTER II. This

chapter is supplementea by Appendices A anl B where some quantitative

results are presented related to the computational accuracy of the

HRM. In CHAPTER Ill we explicitly state tae me_hod of synthesis and

1966018643-012
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demonstrate it by deriving a wide variety of representative machines.

Some of these m_chines have been simulated on a general purpose com-

puter and these results are also presented and discussed in CHAP-

T_R III. In CHAPTER IV the specific problems of constructing poly-

nomial generating machines are considered. In pam_icu!ar_ _ fe.mi_-

of machines are given for interpolating and extrapolating values of a

function defined only by empirical data.

Binary Rate _ltiplier

A binary rate multiplier Cabbreviated HEM) is a means of se.aling

down a pulse stream to some specified fraction. A logic diagram of

a BRM which is built out of standard logic elements is shown in

Fig. 1.la. This circuit is described in detail in several of the

references (e.g., Refs. 4 and lO). Consequently, a brief description

will serve our ptu-poses. The inFat pulse stream is applied directly

to the binary counter whose value is denoted by XnXn_ 1 . . . x2x1.

Each flip-flop of the counter is operated as a trigger. For every

two input pulses to a trigger two output pulses are produced; one

pulse when the flip-flop makes a 0 to 1 transition called an _ pulse

and one when the flip-flop makes a 1 to 0 transition called a

pulse. _e _ pulse is used to trigger the successive stage of the

counter. The _ pulses are gated through gated pulse generators and

mixed through a NOR element to produce the desired fractlon of the

input pulses. This simple mi_clng technique may be used because the

pulses from the various stages are separated in time from each

other. This timing factor is shown in Fig. 1.lb.

The quantitative relationship of a BRM may be expressed as

1966018643-013
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follows : If Ax is the number of input pulses, the number of out-

put pulses _roduced by the kth stage of the counter is _x - 2-k.

This ]t: _-_-"....mu .___c_ve relation will remain valid over any interval for

•which _x is a _l_iple of 2k pulses. If Y-k is the level set-

ting of the kth stage gated pulse generator, the number of output

pulses which may be gated through this stage will be Y-k _x • 2-k.

Since the output pul_as from the various stages are simply mixed,

the number of output pulses 2g of an n stage BRM over any inter-

val _w which is a multiple of 2n pulses will be the sum of all

the uulses gated through all the stages. This outFat is

n

= y.12-i (1.1)
i=l

The quantity y = _ y_i 2-i is a binary number. Therefore
i=l

Eq. (i.i) may be written as

=y (1.2)
where the range of y is

O< y < 1 - _-_ in steps of 2-n (1.5)

If y remains constant over a _x interval of 2n pulses,

then the output shown by Eq. (1.2) remains exact. However if Zkx is

less than 2n pulses then hbis multlplicative relationship remains

valid only on the average. This can be demonstrated as follows: If

Ax is the number of input pulses into a n-stage BRM starting with

counter value x, and whose gated pulse generators are set to value

y, then the output for this machine is _zx. Since there are 2n

possible starting values, r,hen there are 2n possible different

1966018643-015
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m

machines. The average output; denote it by _z, over all of these

2n different machines is

2n _ = E _ _zx (1.4)
x=0

The total pulse output over all of these machines is Azx

pulses. This is equivalent to putting 2n _x successive input

pulses into a single machine since each transition over all of these

machines is attained _x times. For exsmple, the transition ending

with counter value x is attained by the _ machines startir_ out

with the counter value prior to x. Therefore, the total number of

output pulses over all of these machines is also given by Eq. (1.2).

2n-1

x=_ _zx =y •2n _ (1.5)

Combining Eqs. (1.4) and (1.5) we have

Because of the approximate nature of Eq. (1.2) when dx is

less than 2n pulses, we will calculate the specific output sequence

in demonstrating specific machines. For these calculations, the

pulse stream shown in Fig. 1.1b may be displayed in vector form.

This will be called the p-sequence. Each position of the vector in

this sequence represents the possible output at a particular pulse

time from a stage of the BRM. The p-sequence for a two, three, au_

. four stage BRM is displayed in Table i.i

1966018643-016
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TABLE 1.1 - EXAMPLES OF p-SEQUENCES

Pulse 2 Stage 3 Stage 4 Stage
p-sequence p-sequence p-sequence

i i0 i00 i000

2 O1 010 0100
3 i0 i00 i000
4 O0 001 0010
5 i00 i000
6 010 0100
7 i00 i000
8 000 0001

I 9 lO00
i0 0100
Ii lO00
12 OOlO

5

13 i000
14 0100
15 i000
16 0000 _-

The p-sequencesglven above assumes that the SRM counter start-

ing value is zero. If another start_g value is used then its

associated p-sequence can be easily obtained. Moreover , if an in-

terval greater than 2n pulses is used, then the p-sequence can be

obtained by repeating the p-sequence given above.

The sequence of output pulses may be calculated by multiplying

uit-by-bitthe p-sequence with the respectlve values.,of-the level _.
l-

settings of the gated pulse generators.._-This,process is illustrated /

below by two examples.

i
i -°

/

., [
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Example A-

/lO&,/OlOlO!Oi\/o\

°_il_°_i°_q: °i

lO( \iii01111/
00]
i0¢

OiC/

lOC
OOC

Example B:

\OOOLOOO/ i ;
i

].

The first matrix, in each of these examples, is the p-sequence. The

next matrix represents successive values of the gate settiugs. When

these two matrices are multiplied_ the result is develel_ed __long the

diagonal of the resultant matrix. This result is shown as a vector

on the right hand side.

The expected output value of Example A by Eq. (1.6) is 35/8

pulses for the 8 input pulses. However, as showr,by actual compuJ_ -

tion, the B_M yields zero output pulses. O_ the other b_nd, the

expected value of Example B by Eq. (1.6) is 21/8 pulses for the

7 input pulses. The above computation yields 7 output pulses. Both

of these examples are pathological cases in the use of the BRM. The
l-

approximate nature of Eq. (1.6) can ordinarily be expecte@ to yield

more realistic results. Some of these results are presented in

CHAPTER Iii.

The method of synthesis to be presented aecessitates that the

BRM operate on signed quantities. In particular, the level-setting of

1966018643-018
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the gated _Is_. generators and the counter "..... _ _ pui_e_ must be

signed quantities, and the BRM is to yield a signed pulse output.

If the output pulses are accumulated in a counter then tilesign of

the pulse will determine the direction of c_-.unting. If the output

pulses are used to drive a stepping motor, then the sign of the pu].se

will determine the direction the stepping motor is to turn. Through-

out this discussion we will consider that the signs;of,various quan-

tities are available through level logic. Consequently, the output

sign can be obtained from the inFat signs by an exclusive OR circuit.

Counter

The purpose of the counter in the machines which will be con--

sidered are twofold_ (1) to accumulate the pulses arriving at the

counter in order to display the total number of counts, and (2) to

" set the levels of the BRM's. In the first application the counting

sequence can be any desired sequence for a terminal device. In tony

real time applications the outl_at pulses may not be accumulated di-

rectl,y but are converted to an analog quantity for analog process-

ing (e.g., by a stepping motor). In the Second application., the
°

counting.sequence must be compatible with the BRM. This general-r-e-2_

quirement can be met by the circuit displayed in Fig. 1.2.

A number is rei:r_-esented in .2.his count@r by magni'_de plus sign.

As had been stated earlier the signs are represented by level logic.

The counter counts d_ :.nmagnltud@ when the input pulse and counter

_re opposite in sign,.and counts up in magnitude when t_.e:_counterand ...--_--

input pulse have the same sign. The circular is designed so that _the-

,_..-pu_sesare used t_ count down and the g pulses used to count up..- ./-
°

/

1966018643-020
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There are two representations of zero; that is, minus zero and

positive zero. When the co,mter value is at +00 . . . 0 and a -I

pulse arrives +.hen the counter is set to -00 . . . O1. _nis end cor-

rection is accomplished in three steps. The normal sequence first

c.hanzes the counter value to +ll . . . 1. The magnitud_ is then

corrected iu the second step to +0 . . . O1. Fi_liy_ the sign is

changed to -00 . . . O1. The sign is changed last so that the

pulses generated when the magnitude is cczrected do not propagate to

the successive stages of the counter. In a s._i]_r manner to that

just given, the counter is s_t to +00... O.!when the counter values

is -00 . . 0 and a _l pulse arrives. The down counting sequence

fc? a three _tage counter is given in Table 1.2.

TABLE 1.2 - IkSWNCOUNTING SEQUENCE
-t

-1 Input pulse +l Input pulse

-lll
: +llO -ii0

+lO1 -lO1
+100 -i00
+Oli -Oll
+010 -0i0
+OO1 -001
+000 -000

+iii _, +001 _ -001 -iii _ -001 _ +001

The up counting sequence utilizing the _ pulses of the fllp-

flops is given in Table 1.3.

o

.L
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TABLE 1.3 - UP COU_]_G SEQUENCE

-! Input pulse

-000 +000
-OO1 +OO1
-010 +010
-011 +Oll
-i00 +i00
-lO1 +lO1
-ii0 +llO
-iii +Ill

Since the signs of both the pulse output of the BRM and counter

value are to be processed by level logic, then the activation of the

up-down line is accomplished by an exclusive OR circuit. This is

obvious from Table 1.4.

TABLE 1.4 - COUNTER SIGN CONTROL
i.

Sign Sign Line
, input counter activated

pulse

+ + Up
+ - Do_

- + Down

- - Up

-/

Anti-Coinc idence Circuit

Pulses arriving at a counter simultaneously must first be

separated before tBey are entered into the counter. The circmit

that accomplishes this task _is called an anti-coincldence circuit.

F_ndamental!y, this circuit necessitates storing each pulse as it

arrives. Each stored pulse is-then presented to the counter accord-

ing to a fixed pzogram. _e c._rcuit configuration which can accom-

plish this task for two inputs is shown in Fig. 1.3.

The operatign of the circuit given in Fig. 1.3 is as follows:

1966018643-022



_:)-,.t't'_

0

! ,,,.,

1966018643-023



15

If a False Irom input 1 exists, it _s _tored in flip-flop 1. If a

pulse from input 2 existsj it is stored in flip-flop 2. It will be

noted that these two inputs can arrive simultaneously. Two pulses

are emitted by the clock which are separated from each other. If

flip-flop 1 had been set by iuput l_ it is reset by the clock

pulse C1, which in turn generates an output pulse. If flip-flop 1

had not been set, no output puls_ will appesx in the output. Flip-

flop 2 is reset and an output is similarl_ generated by clock

pulse C2. Since clock pulses C1 and C2 are separated, the

corresponding output pulses sa-e also separated.

Since the sign of a pulse is processed by level logic, the sign

need not be stored before they are presented to the anti-coincidence

circuit. However, when a pulse is presented to the counter, its

sign must also be presented. Thls may be simply accomplished by

shifting the sign level to a fllp-flop by the separated clock pulses

C1 and C2. This circuit is also shown in Fig. 1.3 where S's and

S's are the sign levels of the pulses and their complements, respec-

tively.

If more than two inputs arrive at the counter simultaneously,

then a need arises for a circuit other than a simple clock to sepa-

rate the stored pulse_ A simple binary counting sequence such as

the leftmost sequence shown in Table 1.5 Will serve this purpose.

However, it will be noted that while this _equence can generate more

. than two steps, the _ and _ pulses from the various flip-flops are

ncb separated, so consequently can not both be used.

All the sides of the flip-flops could be used if the counting

"19660"18643-024
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sequence utilizes _ unit distance code. Such a code would guarantee

that not more than one flip-fl_p would change state at any step of

the counting sequence. Consider the Gray code countir4_ sequence

given by the middle se%uence in Table 1.5. This counting sequence can

be used to s:-_parateas many as six inputs arriving at the counter

simultaneously. IIowever, this requires the counter itself to go

through eight steps. An example of a counting sequence which may be

used to hardle six inputs and yet go through only six steps in the

counting sequence is given by the rightmost sequence in Table 1.G.

TABLE 1.5 - PULSES GENERATED BY SEVERAL COUNTING SEQUENCES

i t" '

Counting Pulses Counting Pulses Counting Pulses
sequence generated sequence generated sequence generated

i . I

000 --_ 000 --_ 000 --_

001 -_ OO1 -_- 001 -_-
010 --_ Oll - -_ Oll _--
011 _ 010 _-- iii --_
i00 --_. ii0 --a ii0 -_-
101 -_ lll -_- i00 _--
llO --_ lO1 --_

111 10o I

Schematic Representation

The three circuits described in this chapter are the principle

design elements. However, in describing the machines promised by

this thesis, these three circuits will be represented as operational

units. The advantages to be gained by using operational units rather

than these circuits are twofold. First, the method of synthesis can

be more clearly presented. Secondly, a considerable hardware reduc-

tion can usuall¢ be realized when the composite machine is con-

1966018643-025
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sldered. These simplifications arise when all of the features of

these basic circuits are not required. A checklist of the features

which when removed would simplify the basic circuits would include:

(1) sign control of BRM may not be required, (2) counter may not

be required to both countup and countdown, (3) two BRM's may receive

the same in_Jt pulse stream with the result that one _M counter may

be used with Swo sets of gated pulse generators, and (4) the level

setting of the BRM may be constant with the result _at a scaling

circuit (see Ref. 10) rather than a BRM may be used. These three

circuits are, however, sufficient as principle design elements.

The three principle design elements as operational units _zc

presented in Fig. 1.4. The E_M is represented by the schematic dia-

gram shown in Fig. 1.4a. The value y in this diagram is less than

one arid is obtained from level logic. The quantities _x and

are the input _nd output pulse streams, respectively. The input-

output relation for this diagram is expressed Ly Eq. (1.2). Alter-

nately, the BRM is represented by the schematic diagrs_ shown in

Fig. 1.4b when the value of y remains constant, in these cases

the BRM may be replaced by a scaling circui_ in the final design.

Fig. 1.4c presents the schematic diagram of _he counter. The quan-

tity &z is an input pulse stream and z is the output which may be

used in level logic. _nen the counter is used to set the levels of

the gated pulse generators of a BRM a scale reduction of 2 -n is

implied by the connection. At times this scale reduction will be

shown explicitly by t_ _ same diagram shown in Fig. 1.4b. 'Eae initial

conditions of a counter may be shown explicitly by inserting it in
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the box_ i.e., Z(o ). Considering the counter value as a function of

iterative steps then the input-output relation may be expressed by

the first order difference equation

Z(k) = Z(k-1) + _(k-!) (1.7)

The value of Z_k ) in Eq. (1.7) in terms of the initial condition

of the counter is

z(k): Z(o)+_ _(1) (1.8)
l=O

Fig. 1.4d represents the schematic diag'.-_Jof an anti-coJ_ucidence

circuit. 'Fnis circuit accepts multiple pulse inputs and produces

a single pulse output. The design of this circuit is such as to

permit the input p_lses to arrive simultaneously. However, at times

it will be convenient to use this schematic diagram for multiple

pulse inputs even if the pulses are known to be separated. This

usage, therefore, should permit a corresponding simplification in

the final design.
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CHAPTER II

ANALYSIS OF MACHINE COMPUTATIONAL ERRORS

Classification of Errors

The difference between the actual output of a system and that

given by a theoretical model is considered the error of the system.

If f represents the theoretical process given by the model, x

represents the values of t_e arguments, fa represents the actual

process, and xa represents the values of the arguments vitiated

by previous calculations, then the total error 8 is given by

= f(x) - fa(_) (2.1)

It is convenient to subdivide the error into the error propa-

gated from previous calculations and error generated locally. The

sum of these two errors is also equal to the total error as is evi-

denced by rewriting Eq. (2.1) as:

= f(x)-f(_) + f(_) - fa(xa) (2:2)

The quantity f(x) - f(Xa) is error propagated from previous calcu-

lations and is called the propagated error. The difference between

the value calculated locally b_ the model and the value generated by

the actual process; i.e., f(xa) - fa(Xa), is called the generated

error.

yon Neuman and Goldstine (Ref. l) classified the generated

.- °-

errors into four categories according to their source. These four
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sources are simply listed as follows.

(i) Model errors

(2) Input errors

(3) Truncation errors

(4) Rounding-off errors

The last two errors are of primary concern to the numerical

analyst and are called computational errors. _humcation errors re-

sult from expressing transcendental operations as numerical pro-

cesses. For example, if'a transcendental fanction is evaluated by

an infinite seri_s or as the fixed point of a process, then the

truncation error is the error introduced by terminating tho evalua-

tion short of the limit goals.. In the case of an iterative process,

this error is called the iterative truncation error. Rounding-off

error is introduced into the resultant after each arithmetic ol_ra-

tion. In conventional digital computers, this error is introduced by

rounding or chopping a number sxch that it can be represented by a

register of fixed length. _t can be viewed as an error in bhe

arithmetic pi-ocesses.

If fc represents the numerical approximation of the theoreti-

cal process f, then the difference f(xa) - fc(Xa) is the generated

truncation error and fc(Xa) - fa(xa) is the generated rounding
o

error. The generated error is equal to the sum of these t_o errors

as is evidenced by

f(xa) - fa(Xa)= f(xa) - fc(Xa) �fc(Xs,)- fa(xa) (2.3) _-
/

.

-- ,_//" /f

f/

/"

f'." /.
/
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Computational Errors of .,RM

Fig. 2.1 represents a counter in cascade with a BRM. If Y(k)

in th_s figure represents successive values cf y, each of which re-

main constant over some interval of 2n pulses, then the value of

the counter can be expressed by the following difference equation.

Z(k) = Z(k-l) + Y(k-l) _x (2.4)

If z(o ) represents the initial value of the z counter, then

Eq. (2.4) may be expressed as

z(k)= z(0)+ YCi) (2.5)

Th:is equation is reco_'i.zed as AaZer' s (rectangular) integration.

A model of this process which is convenient for machine synthe-

sis is presented in Fig. 2.2. The deviation of the results given 'by

the model from that given by Eq. (2.4) is the tl_mcation error.

The counter z in Fig. 2.1 may be viewed as a lower register

z_ consisting of n stages and an upper register zu of an arbi-

trary number of stages. Thus, after the first iteration of

Eq. (2.4), z_ contains the fraction Y(0) 2n of input pulses.

Rounding of the upper register m_..ybe accomplished by presetting

z} to one'half of the maximum counts possible in z_, and chopping

may be accomplished by presetting z_ to zero. After the second
°.

iteration, Yil) 2_" p1,1ses are added to the counter z. As a_resu].t
/-

Of this/i_e_ration, z_ may or may not overflo_ into zu. Proceeding

- _n thls manner, it is noted that . zu repr'e.sents_-the-sin_le _rec_ision

rounded or chopped sum shown_ in Eq. (2._).

The above description _has been presented only in Order_to put
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Y(k)AX ,,,_ Z(o) L?(k)
Y(k)-- l

Figure2.1. =Euler'sint_dration.

,I, _ ,.....ydx z
-"! Z(o) " '

Figure2.2. - Integrationmodel.

.o-

o

T
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the rounding error in the framework of conventional computers. A

more realistic operational procedure may be realized is _x is a

subinterval of less than 2n pulses. The advantages to be gained in

this situation _re twofold; (i) the speed of the computation may be

increased, and (2) a hardware savings may be realized by reducing or

eliminating the lower register. The output in this case is vlbltated

: also by an error in mulLiplic_Lion. In p_t_cular, if ZSa is a

subinterval of one puls_ then the output is in error only by the

error in multiplication. Because of the importance of Eq. (2 .&) in

this study, the multiplication error of this equation is presented

in Appendices A and B and in the followSm.g sections.l

Multiplication Error For_alas

Starting the BRM coun-_er with zero the _,ctual output of the B_M

is given by

z = Entier (y _x + 1/2) (2.6)
l

This function together _ith a plot of Eq- (1.2) is given in

" Fig. ,(2.5) for a three stage BRM for the various values of y. The

difference E between these two quantitie_; i.e.,

E = Entier (y Ax + 1/2) - y &x (2.7)

is plotted for this three stage BRM in FigJ (2._)o The difference

E, when only one stage of an n stage BRM is gated by y, can also

be expressed systematically in tabular form as shown in Table Z.1.

°
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TABLE 2.1 - _JLTIPLICATION ERROR E OF B_M

_.-mENONE STAGE IS GATED

!

Y-1 = llY-2 = 1 Y-5 = 1 Y-k =
1

I E ! E ...... E I
Xll X2Xl x3x2x I XkXk- 1 • . . x3x2x I

E
l! !

o[o ool o ooo o oo . . oool o1/_o! ,-1/__Ioo1 -1/_oo . . oo11 -l#_
• i ° ''_ -2/s o _ -2/2_

!oi ,, o o o!1 1 O 1 1 -3/9!

! l°° 1 "_8 " "
i0i iO/_

ii0 21_4ol .i11 I-(2k-l-l)/2k
1,11 1/o1o . . o oo I _/_

1 0 . . 0 0 1 ! (2k-! i)/2k
I
o

t

1 /
! •
F

i II . . . Iii 12 k
E

, ,, | ........

An inspection of these tables shows that the error associated

with the various stages of a BRM may be expressed more concisely in

algebraic form as shown in Table 2.2.

TABLE 2.2 - M[rLTIPLICA_0N EB_ROR E

IN AI_EBRAIC FORM
| ......

IStage E
I L ................

1 y_l(Xl/2)
_ y_2(x_/2-Xl/,4)
3 y_3(xs12-x2/4- Xll8)

i y:#xk/2-xk-1/_-••-Xl/_-k)

For an arbitrary value of y, the value of E is the linear

combination of the values sho_.m in Table 2.2. This bilinear form

is shown in Eq. (2.8) for an n stage BRM. The element subscripts

of the Boolean vectors x and y (i .e., vectors whose elements are
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0 _r l) which are shown in this equation correspond to the stage

numbers of the BI_4 shown in Fig. 1.1.

_.= (x1,x2, , _ )_,i (2.8)

V:o/
I

/ "i ! ! ! ! im_

I2 -_ -8 -1-6 "'" 2n-1 2nI
' i 1 i I i
i o _- --,:-: -.. 2n-2 2n-i

1 1
2 4

M = . . (2.9)
- t

1 1 i
2 _ 8

1 i

!

o . . o .:

In the formulation of E, the maximum 7alues of the output

of the BRMwere reflected at the ;cints of discontinuities. It

will be observed that just prior to these points the error is one

quanta less than that shown by E. A formulation of F in which

the minimum values are reflected at the points of discontinuities

can be obtained in a manner similar to that for obtaining E. The

_antity F, when only one stage of an n stage BRM is gated by
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y, is show1_ in tabular form in Table 2.5 (on].ya few cases are

exhibited).

TABLE 2.5 - MULTIPIA'CATION ERHOR F WHEN

ONLY ONE STAGE IS '_.3ED

= i Y-2 = 1 ! Y-5 = IY-1

! :

o o, o :OOo2 i o1 1 i-1/2 1 - 4 _ = o c 1 -1/8
' ] 0 1 0 -2/4I_ i 1 0 0 1 0 -218I 0 1 1 1 1/4 II O 1 0 1 1 -318

I ]. c o lOO -__/8
011 I01 _18
0 1 0 1 1 0 2/8

I

I 001 iii 1/8

It will be observed that the F values equal the E values

except at the points where the discontinuity occurs. At these

points F equals -1/2 while the corresponding E value equals

+1/2. The C values shown above correspcnd to the 2 's comple-

ment of the x values. It will be observed that the F values are

identical in terms of C to the negative values of E. Conae-

quently, it can be asserted that F in terms of C is just the

negative of E.

fY-l\

F =-(CI,C2, . .., Cn)M! Y.2 (2.10)

_Y-n]
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An ey_mple will help clarify these formulas. In this example

the value of y is 101_ and the values of E and F are calcu-

lated for successive BRM counter values.

-o_' /iI_-ll,_-iLs\(

_:/lo%o) lu,_:.'o_- / 71s /o1_1_1 \ 1/41

in -d4J o : /-s
o_ xo _,u • i-",_3_o i -7i_

F: - tOOl ! t -1/2

-,lo /to_o/ _-_i_
\-318

This example is .<_hownin graphical form in Fig. 2.5.

Consider the difference E - F. For a three stage BRM this ls:

E -.,..'-- (xl,x2,xs)M + (Cl,C,.,%)_ y_ (z._)
<J v_J

The 9remultiplier to the vector y; i.e.,

(Xl,X2,xs)M 4 (CI,C2,Cs)M = (xI + Cl,X? + C2,x 5 + 05)24

is equal to the values given in the p-sequence.

_i_ [1/2-1/_-1/_k Iooo\
oo. (oo°_
_ll/ t lOO#

\OlO/tT_/ \1oo/
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Figure2.5. Multiplicationerrorresultingfromy=.101.
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When a BRM counter starts out with an arbitrary value, then

the starting value must enter into the error formula as a param-

eter. The'_e errcr formulas are given explicitly by Eqs. (2.12)

and (2.13). Ln particular, Eqs. (2.12) and (2.13) reflect the maxi-

mum and minimum values of the actual output at the points of dis-

continuities, respectively. In these formulations x and xS rep-

resents the value and the initial value of the counter, and C

and CS represents the 2's complements of these values. Th__ sub-

scripts on those literals represent, as before, the stage of the

BRM. In Eq. (2.13), xSR identifies the right most counter bit

whose value is l; e.g., for the counter val 100 then XsRY_R= y_3 _

for counter value Oll then xSRY-R = Y-l, etc.

r

O = (xI - XSl,X2 - xs2 , •., xn - XSn)M (2.12)

r-n/

/_L_Y-1

H =-XsRY_R- (C1- Cs1,C2- CS2 , ..., Cn - Csn)MI _V2) (2.13)

\,4
Multiplication Error Bounds

The maximum positive error and the minimum negative error for a

n stage BRM whose counter starts out with zero may be obtained by

an analysis of Eqs. (2.8) and (2.10), respectively. These values

will then form a bound of the deviation of the BRM from that of -

exact multiplication. This analysis is preser_te,_ !_.Appendix A. It

• J -_
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is shown in that analysis that for an n stage BRMthese values

are •

7 n (-i )n
Emax(n) = _" + _ + (2.14)9 • 2n

7 n (-i)n (2.]Z)
F_ ()min_n = 18 6 9 - 2n

Eq. (2.14) is plotted together with Eq. (2.15)-in Fig. 216. As

a by-product of developing Eqs. (2.14) and (2.15), it was necessary

to find the points where these values occurred. These points are

tabulated for various BRM in Tables 2.4 and 2.5.

Appendix B presents an analysis of a HRMwhose counter starts
T

out with an arbitrary value. The basis of this analysis is to use

Eq. (2.]2) to obtai he maximum positive error and to use

Eq• (2•13) to obtain the minimum negative error. For a n stage

BRMthese values are:

%ax(n) = + - (-1)n'
• 9 3 9 . 2n-1

7 n (-I)
- Hmin(n) = -_ 3 9 •2 n-I (2.17)

These values form a bouudfor the generated round-off error.

, Fortunately_ these values are _aken on at only two points of the

_ (for n > 2)_ and therefore one can exl_ct-better results than

Would be l_red_( _d by these values. ..Thesevalues are piotted in

Fig. 2.7 and are also presented together with the points at which

• they occur in Tables 2.6 and-2.7. _

The problem which l_s been considered in Appendices A and B.

. - !

1966018643-042



54

T3.BLE 2.4 - x AND y VALUES FOR Emax

x7""Xl Y-I'''Y-7 x7"''Xl Y-I'''Y-7 Fmmx

2j n ii n n 3/_l3 ioilol m nl 7/8

,
i01011 !i0101 !lOl01 I01011 89/6_ l
ioioioitO10101110",01111010n 199/1281

TABLE 2.5 - x AND y VALUES FOR Fmin

n x7...x I Y-I" "Y-7 x7"''Xl Y-I'''Y-7 Fmin

2 O1 ll O1 ll -5/&

5 Oll 101 001 lll -7/8
4 OlO1 ll01 OOll lOll -17/16
5 OlOll lOlO1 OOlO1 ll011 -59/52
6 010101 ii0101 001011 i01011 -89/6&

70lOlOll i010101 0010101 ll01ull -199/]28

TABLE 2_6 - x, Xs_ AND y VALUES FOR Gmax
!

n XST...XSl x7...x I Y-I-"Y-7 xs7""xsiiX7:"Xl Y-!---Y-7 Gm_x

2 O1 lO O1 • 001 ll ii :
5 -001 llO 011 I 010 -i01 i01

0101 i010 0101- I 0010 ii01 i011 25/16
5 OOlOl Ii010 OlOll OlOlO lOlO1 lOlOl 57/52

6 OlOlOl i01010 010101 001010 I]-0101 lOiOll 155/6_

7 0010101 ii01010 OlOlOll I 0101010 i010101 i010101 515/128

TkBLE 2_7 - x, XS, AND y VALUES FOR Hmin

n Xs7,._Xs1 x7.,.x I y_l...y_7 Xs7...XslX7...Xl y_l...y_7., I_i n

oll --
1101 00121_1011 101_1. 0101 121.01 -17_8

lOlO1 OlOll lOlO1 llOll OOlOl llOll -59/16
6' llOlO1 OOlOll lOlOll lOlOll 010101 ii0101 -89/52

lOlOlO1 OlOlOll lOlOlOi llOlOll O010101 llOlOll 1-199/6_
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and in this section is illustrated in Figs. 2.8a and 2.8b. The

actual and desired outputs for a 2 and 3 stage BRM are plotted in

these figures for all starting values. As is illustrated, finding

the multiplication error bounds by graphical means is not trivial.

Tae points labeled Emax, Fmin, Gmax , and Hmin in these simple

cases agree with those predicted in Appendices A and B.

Error Bounds

The usual formulation of tae error problem is to calculate

bounds of the total error based on bounds of the generated errors.

In the case of Euler's integration these results are available in

the _..iterature(e.g., Refs. 15 a_6 16). Since the analysis by which

the _ounds are obtained is based on worst case conditionsj the re-.

sults are usually too pessimistic for design purpose. In particu-

lar, P. _emrici (Eel. 15) has presented the complete analysis of

the initial value problem

y'=f(x,y),y(a)=_ (2.18)

approximated by Euler' s integratiou. The bounds trot he presents

are in terms of Lipschitz function; i.e.,

EL(X)= eI_x - 1 L > 0L

x L = 0 (2.19) •

where L is a constant such that for any x in the interval

.
a < x < b and any_wo values y ar:d y

lf(x,Y) - f(x,y*)l <-._IY" Y*I (2.2o)

The bounds for the trtu_cation error t(k ) and the accumulated

rounding-off error _(k) are given by
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Figure2.8.-OutputofBRM forallstartingvalues.
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t(k ) < _x N(X(k ))EL(X(k ) - a) ( o ",2 ._i;

e - a) (2.22)-(1)s _ ET.(X(k)

where N(x) = 1/2 max]y"($) I for all t in the interval a < t <_x

and e is the maxi_am local rounding error.

The total error 8_k) is bounded by the sum of these two

bounds; i.e.,

e

8(k) < _x N(Xk )EL(X(k ) - a) + _ EL(X(k ) - a) (2.25)

Consider now the generation of this function by use of a BRM.

The function f(x,y) is used to set the level of the BRM, and the

output of the BRM is summed in a counter which represents the vilue

of y (see Eq. (2.18)). If the value of f(x,y) is updated ._v-ery

_x pulses, then the bound given by Eq. (2.25) may be appli,_d

directly to this process. Suppose the interval size is chosen such

that the error bound given by Eq. (2._5) is a minimum. If f(x,y)

is updated every pulse instead of every Zkxpulses , we could.expect

that the actual error would be smaller than this minimum. In any

event we wiil take this minimum as the error bound for the function

generated by the BRM. The minimum of the right-hamd side of

Ea.(2.23)is

c(_)< _S V_(x(i))ET(_(1)-a) (_._)

The value of e in Eq. (2.21) may be obtained from Eq. (2.17).

" This equation may be used to form a bound of the multiplication

" error, Moreover for large values of n, this may be approxlmated by

7/9 + n/5. If the maximum value of y; i.e., Y_x, is represented

in the counter by 2n counts, then
%
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e < 7/9 +n/_ Y_ (2.2S)
-- 2n

Combining Eqs. (°.24) and (2.25) the error bound is

,'7/9 _• + n/5

g'(k) < : 2n Ymax NCx(k)) EL(X(k) - a) (2.26)-_j

This equation has the property that the error bound decrease

as the number of stages of the BRM is increased. However, it is too

pessimi.._ticfor design purposes. This point will be illustrated

in the next chapter by applying this formula to a specific countup-

countdown machine.
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CHAP_S_R III

GENERATION OF FUNCTIONS

,Synthesis (Differential Equation)

The method of synthesis which will be applied in this section

is to express the function to be generated as the solution to a

differential equation, 2t-has been de,.on_trated with analog tech-

niques that a wide variety of functions can be generated by

utilizing only integrating units and adders (e.g., Ref. 8). For

example, with a mechanical differential analysis the ba._ic units

are a ball-disc integrator and a differential. In the synthesis of

countup-co_mtdo_n machines, -the integrator model of Fig. 2.2 and

the anti-cOincidence circui_ which permits the summation of t_o

pulse streams will serve as these operational units. It should be

reemphasized that the principle design elements were recognized as

entities only for purposes of synthesis, and that the fabrication

of the actual machines may permit circuit simplification which may

result in reductions of the hardware requirements.

The fi%st step in this synthes_s is to express the function tc

" be generated as a differential equation such tha_ the h_ighest order-:

derivative is isolated; i.e.,

= x) (s.1)_dxm _m,-1 _, .... , _, Y,

The In_d__e_Pe_dent variable in the above equation is-represeated by a

J

............. - ............. -- ........................
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clock. The next step in the synthesis is to assume that a circuit

has been designed to generate the highest order derivative. Inte-

grators may then be used to successively reduce the order of the

derivative according to the equation

=/! dky dx (3.2)dxk_l dxk

A circuit for generating the highest order derivative s whose exis-

tence had previously been assumed, may now be developed by the con-

straint defined by the right hand side of Eq. (3.1). The above

process terminates the design of the basic configuration for gener-

ating the function.

The schc ztic diagram of the machine just designed must then

be scaled in order to (1) exactly match the -lefining equaticn and

(2) accommodate the range of variables in a finite machine. In par-

ticular, the counters which are used in the machine configuration to

handle magnitudes having a finite excursion based on the number of

stages. Therefore, when a bidirectional cou_uter is used then its

magnitude must be such that

: Icounter value I < "2n - i (3.3)

Since the level Setting _of a BP_4 mus'tbe less than one, th_ when

a counter is used for this purpose its .scale"willL'he_r_duced

accordlngly, i.e.,

[level setting of BRM] = 2-n [counter value ] (5.4)

Fir_lly, the scale of both Sides of the defining equation; i.e.,

E_I. (3_1), must be the same.

.................. _ .... ._ _ . --_ - .......... _ .-
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This procedure may be reduced to a finite number of steps.

synopsis of these steps is as follows:

Ste_wl. Isolate the highest order derivative in the differential

equation as sho_n in Eq. (3.1).

S_. Assume the high_st order derivative has been generated in

a counter.

Ste_ 3. Generat:_ each successi_ u lower derivative by using an

integrating unit.

Step 4- Constraint the independent var'able, the function, and its

derivatives accordi_'g to tho right _and side of Eq. (5.1) and con-

nect its output directly to the counter representing the highest

order deri_tive.

Step 5. Assign arbitrary constants to the independent variable and

its highest order derivative.

Ste_ 6. Write constraint equations at _ach counter based on _he

maximum excursion an_.number of stages.

Step 7. Write constraint equa+-on based on the defining equation.

Step 8. Calculate scale fac-/ors to satlsi_j th'_equations of Steps 6

and 7.

We continue with the application of this procedure in the de-

sign of specific co'mtdown-countup machines. The first two exam-

ples will be a machine for gezerating the exponential _ancti6n. Bnd
• J

another machine for generating the :_i_c.cosine functlons. These

' two machines will be illustrated in detail.

j ";
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Exponential Function

The _ifferential equation

y'= y,y(O)= 1 (3.5)

whose solution is

y= e x (3.6)

will be used to design the circuit for generating the exponential

function. _l'_e design solution for this cil'cuit is presented in

Fig. 5.1. The detail Procedure for this synthesis is as follows:

Step l- The defining differential equatior given by Eq. (3.5) is in

the desired form.

Step 2. Assume a circuit has been designed to generate the highest

order derivative. This is represented by the line labeled y' in

Fig. 3.1a. _ :

_ Step 5. The fun-_tion y is generated by integrating y'.

_. Since by Eq. (3.5) the assumed highest order: derivative

y' is equal to y, then y is d_ectly connected to-tlie line y'°

This ccmpletes the basic circuit shown in Fig. 5_la ..
"7 --_

" "7

": Step 5. This is the first step in the design of the scaled circuit

shown in Fig. 3.lb. The arbitrary constants A and-B are assigned .as

scale factors to the-independent variable :and the highest order

de_rivative, respectiyely. The interpretati_ of A is "A co_mts

per un_t of x". "The interpretation of B is "B counts per unit
"j

of- y"; Note that the scale factor of the counte_in Fig, S..!b.:is

reduced by 2-n when it is used to set the levels of the BRM. If

""_ the value of the'counter is By' counts,-then the level setting of. -._-_:_-..__

the BRM is- 2-nBy ' :"_'_

t
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Step 6. Constraint equations are written for the cou_Iter._i.e.,

12-n_yl_x<_2n_1 (3.7)

Ste__p__o The mechanization of the defining equation is justified by

the following constraint equation.

By'= 2-nABy (3.8)

Step 8. From Eq. (_.-8)it can be calculated that

A = 2'_"counts/u/lit of x (5.9)

The calcul_tion of B depends on the maximum excursion of the

variable y according to the equation

-- Bly_xI<_2n-1 (3.1o)
This essentially completes the schematic design of the circuit for

generating ex. "

In order to select the number of stages; i.e., n, it would be

desirable if an equation were available relating n to the accuracy

of the mchlne. Unfortunately, th_ equation bbtained In CHAPTER II

is not suitable for this purpose. This may be demor_trat_d for this

machine by calculating the bound given by Eq. (2.26) for various

Va]ues of n. Using L = I mud Ym_x :-e for this process, the.n-'

/_ , /7 �3,,.(3.n)
E<_%1 2n+l eta- l)=l.907_ an

Eq. (5.11) may then be used to calculate the bound for tl_is machine.

_Nese_qaleulated _lues,are pres.ented in t_bular form in Table $.1

for _narious values, of n.

°

. ° - =-

_ - -L "

:

o

" . ."
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TABLE 5.1 - ERROR BOUND FOR

EXP0_TIAL FACHINE

n Bound

6 1.190
7 ,892
8 .664,
9 .49L
i0 .362

This bound does have the property, which was ")bservedearlier,

of decreasing as n increases. Unfortunately, it does not de,.cease

rapidly enough for design purposes.

Using a value of Ymax < 5.2, some values of B have been

calcfulatedaxedare given in Table 5.2 together with the initial

value of the counter to match the initial condition y(D) =l.

-_t,_,5,2 - SCA_ FAg_0RS AND INITIAL CONDITIONS

OF EXP0.N_W.:IALNACHI_E

n A B Initial counter
value

• r _ ............

5 52 lO l0
6 64 2O 20
7 128 40 40
8 256 80 80

This series of machines have been simulated on a computer end the

results are presented in Fig. 5.2. When theseresults are com_red

to the desired output it is immediately observed that these results

are much better thegnthose predicted by the error bourns given by

Eq. (3..Ii). Moreover, the five and seven stage machines are seen

. to give better results than the six and eight stage machines.

- A more ;realistlcevaluaf.lonof the results presented I_

- Fig. 3.2 would be to com._arethem to the difference equation solu-

"' tion. The difference equation for theexponential machine may be
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0 21) 40 60 80 100 120 140 160 180 200
Ax

Figure3.2. - Exponentialmachineoutput.

1966018643-059



51

obtained d_rectly from Fig. 5.3, which is identical to the circuit

shown in Fig. 3.1 but labeled according to _aler's integration.

The scale factor associated with the counter _s "B pulses per unit

of y." When the counter is at iterative step k-l, then its value

is at Y(k-1)" During this iteration 2n _x pulses ar_.:iveat the

BRM counter and the BRM Fats out BY(k_l ) _x _lses. These output

pulses are added to the counter to form the counter value for

Iterative step k. Mathematically the value of the counter may be

expressed by -hhedifference equation

By(k ) - BYCk_l ) + BYCk_i ) _ (3._)

If each clock pulse is taken as an Iterative step then _x = 2-n

and Eq. (5.12) may be rewritten as

Y(k)- Y(k-l)(I+ 2-n) (3.13)

Solving Eq. (3.13) iN terms of the initial condltloz_ of y (i.e.,

y(O)= I),then

Y(k) = (i + 2-n)k (3.14)

The difference between the difference equation solution and

the differential equation solution _s the truncation error of the

process. The difference between the difference equation solution

and the aetnA! output is error due to round-off and is illustrated

by the difference in the curves shown in Fig. 3.2. Since the

round-off error has been shown to be dependent on the starting value

of the BRM, it can be changed by using a different starting value

with the objective of obtaining better agreement between the

solution and the actual output. Fig. 3.4 presents the actual output
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F;n,,r_ _ _ - AnnrnYimnt_ _v_n "n;|_|•_......... ;..,............... r ......... g,_neFatoF.

60 !j I}'!i

' ' I i '........... ! I' _'

By (a)Startingvalue: 1. (b)Startingvalue: 2.

60 I ' I ' I,//j l i _1

I J i ' /
40 _T "_" - _ ! • _ "#

11:_ _ !, ,'_"

0..__2.i ° --T--__,,"_"40 60 80 0 20 40 60 80

(c)Startingvalue=3. (d)Startingvalue=4.

Figure3.4. - Outputofsix-stageexponentialm_chine.
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for the six stage BRM for a number of star_ing values together with

a r_o._ of the desired results. It is noted t.b_tby t_Ls simple

means measurable improvement has been attained in the total error.

Finally, consider a configuration of this machine built out of

logic elements on the Case Logic Breadboard (see Ref. 10) for gener-

ating the function. This is shown for a four stage system in

Fig. 3.5. Since the _ponential f_ct__on is a monotonic increasing

function, th_ counter sho_ _ in this circuit is a simple fo_ard

counter.

The synthesis and analysis of a countup-countdovn machine for

the generation of the general exponential function

y = yoeax (3.15)

from the differential equation

y' = _, y(0) = YO (_.l_)

follows with only minor modification the design of the machine for

generating ex, The schematic diagram for this machine is given in

Fig. 3.6a and the logical design is givan in Fig. 3.6b.

Sine-Coslne Generator

The differential equation

y" = -y, y'(O) = 0, y(0) = 1 (3,17)

is used to design the sine-cosine generator. The b_slc schematic

diagram and th_ scaled schematic diagram are sho_ in Figs. 3. ta

and 3.7b, respectively, and may be developed systematically as

followg:

Step i. The defining differential equation given by Eq. (3.17) is
4

in the desired farm_
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l

• sinx

d___x

COSX

y,,

(a)Basicdesign.

L'_2_ A2B2-2ndy AB2"2ny;

k____

B_ AB2"ndy A2B2-2nyI

(b)Scaleddesign.

Figure3.7. - Sin-cosgenerator.
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_. Assume that a circuit has been designed to generate the

._.ighestorder aeriv_tive. This is represented by the line labeled

•- y" in Fig. 3.7a.

Ste_ 5. The function y' is generated by integrating y", and the

function y is generated by integrating y'.

_. Since y enters the differential equation negatively, the

pulses arriving at the y counter ha_2 a sign change with the re-

sult that the output of the counter is -y corresponding to y"

(see defining equation).

Step 5. Arbitrary constants A and B are assigned as scale

factors to the independent variable and the highest order

derivative, respectively. .The interpretation of A is "A counts

per unit of x" (i.e., per radian). _e interpretation _f B is

"B counts per unit of y _. If y' counter is set to 0 and y

counter is set to -1 (note that this corresponds to the cosine

being +l), then yt will countup to generate sine and y will

countdown to generate the cosine.

Ste_ 6. Cons@raJnt equations are written for each counter_ i.e.,

 2-nlY']mx<-2n-1 (3.18)

A2B2-2nlylmax < 2n - 1 (5.19)

Step 7. Constrain_ equation is written to justify the defining

equatlon.

By" = -A2B2"Sny (5.20)

Step 8. Fror Eqs. (5.10)to (5.12), the scale factorF, can be chosen.

A = 2_, BIjYlmax < 2n - 1 (5.21)
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" SoL _ choices for A .and B are given in Table 5.5 :)ased (.

._0.. :..L ]

T_Z.'c ",5 - S,.A7v_ adTO_ -2_' !NTTIAI,

-. .ION_ PeR sln-cos t,"_i'k_gE

....... rZ/._ n A g s f n .
co_,ter c _

3 8 4 0
g 16 8 0 l -..q
5 " 3'_ 16 " 0 : -16 --

6 6_ 52 0 ] -52'

This series of machines has •been simulated on a gompazer and the-:
-- %.. 7

,.-

• ig." -_ -" " "results plotte& on F 3.8. _ .-. o

The truneagion, error associated with this _ircuit may be ell- ..

culated by solvipg %he _iffere_"&e equ_lon_ associated wlth thl_ : .-
• t . . .

I
.

f,. _ 6circuit,- .v.a.[llng the ve !ue_ of tbe Sine counter and cosine counter
%

_ -

" " " ll_jm._# " |I .

at Ite_tive step k "'PS(_)".a.u,l- (k)-,:Zeal__ctiv_ly,-the.._ differ-
< ._ __

ence equations at these _wo co_ters ace:

.. -. - . . . _'"

(3.a2)/."
. ." g - . -

;_: -_ ..

o':mo_e concisely -'- " ..

.. .-

-%

w_ere VZS_" i'_the ._econdbackward diffareP.ce-. Therefore, the

second derivautve in this r_.chine is approximated by the secon_t

backward difference.

If each c±ock pulse is _<en as in iterative, step, then

..:. (3.2_) may be written in ,r.a_rixform as
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An approximate solution of Eq. (3.24) for large n in terms

of the initial conditions

(o)]
may be written as

S(k ) = (i + k2 "2n-l) sin 2-nk (5.Z6)

C(k ) = (1 + k2-2n-l) cos 2-nk (5.27)

__quantihatlve evaluation of this circuit is complicated by the

fact that it is used to generate two Panctions. One method which

se_ms _speclal]y well suited for testing guch a circuit is to plot

one output function with respect to the other function rather than

with res___ct to the independent variable. For the sin-cos generator

this is called the "circle test" since the resultant figure for a

perfect sin-cos generator would be a circle. .Moreover, it is

possible to study the errors due to round-off independent of those

due to truncation by comparing the actuLl output to Eq. (5.24) out-

put. For the sin-cos generator a composite plo'_ of the solution to

the difference equation may be simply obtalned by expressing

'_.Z$) and (3.27) in polar coordinates, with the result thatEqs. _

p = (1 _ 2-n-le) (3.28)

The difference between this equation and the circle represents the

truncaticn error of the process and is seen to increase as the

spiral of Archemedes. The results plotted in Fig. 5.8 are compared
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to the plot of Eq. (3.28) in Fig. (3.9) by this method.

Other Differential Equation Machines

The sinh and cosh machine is based on the differential equation

y"= +y

The schematic diagram for this machine is similar to the slne-coslne

generator except that all outputs from the BRM's are adde_ to the

counters. The basic circuit and the scaled circuit for this machine

is shown in Fig. E.10. It will be noted from this diagram that the

values of A and B are defined by the equation set (3.30) below.

By"= A2B2-2ny

A= 2n

BlYmaxl _2 n- i

IYmaxl <2 n i (3.30)

The output for a sinh and cosh generator i_ plotted in Fig. 3.11

for a five stage system where B is chosen equal to 16. It is

instructive to display the p-sequence calculation from which these

results were obtained. These are shown in Fig. 3.12.

A series of other useful machines will be illustrated in this

section. In particular, if two pulse streams du and dv are

given, then the uroduet, uv, may be generated by using the equation

duv = u dv + v du (3.31)

The basic design for this product machine is shown in Fig. 3.13.

The machine for generating the _ of a function is sho_n

schematically in Fig. 3.14. This machine will generate the function

y = x (3.323
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Three

Fourstage

Fivestage

Figure3.9. - Sin-coscirc!ctest.
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/- -, sinhx

dx_

coshx

(a)Basicdesign.

A2B2-2ndy _ I ......... sinh t

A dx---_ _ x
\

! i
(b)Scaleddesign.

Figure3.10. - Sinh-coshgenerator.

Ii I I
-- i i_°?"-
= 20 _::_ #sinh
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0 10 20 3O 4O
Input(pulses)

Figure3.11. - Outputof 5 stage
sinh-coshmachine.
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du

uv._3_

dv -_ v L/_v du

Figure3.13. - Produ_ machine.

_\ _ dx x22,x x____j/

Figure .3.14. - Squaremachine.
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and is based on the equation

y' = 2x (3,33)

The square machine is utilized as a subassembly in the machine

for generating the reciprocal of a function; i._.,

y = llx (3.34)

The basic design for this reciprocal machine based on the differen-

tial equation

y, = _y2 (5.35)

is shown in Fig. 5.15.

The mach_ale for generating the solution to the second order

differential

y"+ 2_y' + ,,_ y =o (3.36)

is shown in Fig. 3.16.

The tan machine is shown schematically in Fig. 3.17. This

machine Js based on the differential equation

y'= l+ _ (3.3v)

A similarity will be noted between this machine and that of the

reciprocal machine.

The square root machine is based on the solution of the differ-

ential equation

y' = -].I(2y) (3.38)

It will be noted by this equation that it will form a subassembly

of the reciprocal machine. That is, the differential equation

dzl_y= 2z2 (3.39)
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dyldx
Y

tan x ] + tan2 x

L
Figure3.17. - Tanmachine.

Figure3.lS. - Squarerootmachine.
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is used in order to form the function

z = -1/(_y) (s._o)

The basic design of this machine is shown in Fig. 3.18°

Synthesis (Difference Equation)

Consider the iteratlve process of successive substitution in

the functional equation

X(k+l)--_(X(k)) (3.4i)
where _(x) is chosen such that the fixed points of _(x) (i.e,

the points xi where xi = _(xi)) are the roots of f(x) = 0.

One simple form of _ might be x - f(x) which leads to the Iter-

ative Imocess

X(k+l)=X(k)-f(x(k)) (3.42)
A more general form is x - g(x)f(x) which leads to the iteratlve

process

= X(k ) - g(X(k))f(x(k)) (3.43)Xi k-l-l)

& restriction on g(x) in this latter form is that it has no zeros

that are not zeros of f(x) and that the multiplicity of its poles

at the zeros of f(x) be less than the multiplicity of the zeros

of f(x) at these points. With these restrictions, it can be

readily seen that the iterative Eq. (3.43) has fixed points at the

zeros of f(x) (i.e., x = x - 0). The __luction g(x) in Eq. (3.43)

is chosen so that the process converges.

The basic equation of a counter immediately suggests a method

for generating an equation of the form of Eq. (3.4_). This method

of synthesis is simply to generate a pulse stream equal to g(x)f(x)
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' "-_d feed it into a coumter. This procedure may be outlined as

__ follows :_. Write the defining equation in the implicit form g(x)f(x)= 0.

:)_ .$_. Assume a counter with the v_lue of x and generate a

pulse _tream equal to g(x)f(x)p, where g(x)f(x) is the level

3_

_ setting of a BRM and p is the input to the BRM counter.
Ste2 3. Feed _e_k the pulse stream generated in Step 2 into the x

counter.

_. Assign an _b_trary constant to each variable represented

_n t1_emachine.

Step 5. Wrlt-e constraint (quations and calculate the scale factors

such that these equations are satisfied.

Divide Algorithm

Th_ m_.chine for generati;_g x such that

=alb

may be designed as fol]ows:

Step I. _kaeway in which Eq. (_.44) may be re%Titten "._-,'utit

into the desired form is

xb - a = 0 '3.45)

Step 2. Assuming a counter value representing x, a _ulse stream

equal to xb - a z,_ybe generated. _SJis is shown in Fig. 3.19a.

_. The pulse stream generated in Step 2 is fed into the

counter representing x.

_'Ltep4. The schematic of Fig 3.19a is redrawn in Fig. 3.19b, and

e_ch variable is assigned an arbitrary constant.
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x pxb I

(a)Basicdesign.
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(b)Scaleddesign.

..= Figure3.19. - Dividealgorithm. ;

p --

a o

P

- o.

X f ;I -.. -: ""

.o

Figure3.20. - Non-convergentdividealgorithm. - _
J

1966018643-080



72

Step 5. The constraint equations may be written directly from

Fig. 3.19b, in Which an iteration is taken every clock pulse.

cIx_l <-2n- l

A!amaxl _ 2n - 1

Blb_ j _<_n_ z (3._)

CX(k+l) = Cx_k) - BbCx(k)9-2n + _2-n (3._7 )

Suppose for the sake ._fargument that

A = B : C = 2n (5.48)

Eq. (3.48) implies that

Xmax< 1 _ :_-n

amax < 1 - 2-n

bmax<_z - z-n (5.49)

and Eq. (5.47) may be rewritten as

X(k+l)-.= X(k ) -2-nbxCk ) + a2 -n (3.50)

If Eq. (3.50) converges to a flied point, x_ then

x = x -2-nbx + a2 -n (3.51)

If 6(k ) is the iterative truncation error at iterative step k; i.e,

6(k)= x -x(k) (5.52)

then from Eqs. (5.50) and (5.51)

P"(k+l) = (I - b2-n)Z(k) (3.55)

This may be written in terms of 6;(0) as

_(k) = (I- b2-n)ks(0) (5.54)

%_lis process will ccnverge if

lim _(k) = 0 (5.55)
k_m

which implies the condition

1966018643-081



73

Jl-b2-nI< Z (3.56)

for convergence. Therefore, by Eq. (5.56) the process is seen to

converge. However, if the sign of the outputs of the BRM are re-

versed such as sh(;wn in Fig. 5.20: then an analysis will show that

the process will not converge.

Other Difference Equation Machines

The s_uare root muchine; i.e.,

x : 4_ (3.s7)

may be designed by finding the zeros of the equation

x2 -a : 0 (3._)

This machine is _hown schematically in Fig. 5.21. If the scale

factor of x and a are both taken as 2n, then an analysis

simi_ to thst of the divide algorithm shows the iteratlve process

- 2-n_k) + 2-na (5.59)X(k+l) = :_k )

is generated by the machine. The iteration truncation error for

this equation may be written as

8(k+l) : 1 - 2-n(x +X(k )) 8(k) (3.60)

where x is the solution. A sufficient condition for this process

to converge is that

. !1 -2:n¢_+x_ki)I< l (_.81)
Since

Xma x < 1 (5.62)

with the scale factor chosen_ then the process converges, however,
4

had we chosen
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Figure3.21. - Iterativeprocesssquarerootmachine.

t

x x
Figure3.22.- Iterativeprocessproductm-_,chine.
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- 2-nCa - xCk)) 2 (5.65)X(k+l ) = x(k ,

as the iterative process, then the process would not converge.

A product machine may also be designed using this method of

synthesis. In particular, if

x = ab (5.64)

then the product may be found by the .iteratlve process

X(k+l) = X(k ) - p(x(k ) - ab) (5.65)

This machine is shown in Fig. 5.22. If the scale factors for x,

a, and b are _LI taken as 2n, then the machine generates the

iterative process

X(k+l ) = X(k ) --z-n(x(k) - ab) (3.66)

The iterative truncation error for this machine in terms of

_(o)is

_(k) = (i- 2-n)k6(o) (5.67)

Synthesis (Regenerative Circult)

Consider the schematic diagram shown in Fig. 5.23. The value

of K is bounded such that

!KI<_i - 2-n (5.68)

The output equation for this circuit may be written as

= K(dx+ _z)

= K (3.69)
dx 1-K

As K _ i in Eq. (5.69) then the ratio dz/dx _ _. However,

Eq. (3.68) fixes an upper bound on this ratio such that

K_!__ 2n_ I (5.70)
• I-K
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.J dx+ dz = dz

Figure3.23.- Regenerativecircuit.

5

t ! I
".._

/'-' I
"-- 2

E 1 /

4 t I
-I.0 -6 -.2 0 .2 .6 1.0

BRMsetting

Figure3.24.-Amplificationofregeneration
circuit.

q
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Therefore, by using this regenerative circuit, the BRM may act as

an amplifier. Ho_-ever, if large amplifications are to be considered

other ,'actorsmust be _ken into account. In particular, suppose a

&x pulse arrives at the _M and this generates a dz pulse. The

dz _lse is delayed by a gated pulse generator and is fed back to

the B_d_. This in turn may generate another dz pulse. This process

may be continued depending on the value of K. However, each time a

dz pulse is recirculated the _tlse shape deteriorates. For example,

if leading edge logic is used then the rise time of each pulse will

be increased until the d_ pulse is not s_b_rpenough to be utilized.

Moreover, enough time must be allotted be_._een the dx pulses to

permit the maximum number of dz pulses. The maximum value cf K

usually utilized in these circuits will in genera] be less than

that permitted by Eq. (3.68).

This point is illustrated by the plot of Eq. (3.69) in

Fig. 3.24. If -1 < K _ I_/2 then at most 1 l_lse will be fed.back

with each input pulse. If 1/2 < K < 1 then more than 1 pulse will

be fed back with each input pulse. Therefore, by fixing the upper

value of K, the maxinram number of feed-back pulses may be re-

stricted.

The method of synthesis in this section is similar to that

used in the synthesis by differential equation. However, in this

section the differential equation will involve the highest order

derivative on both sides of the equstion_ i.e_,

dxm m' ",Y,
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In general the equation is written in this form when the highest

order derivative can not be isolated In particular, if the highest

order derivative has a non-cons _ant coefficient then it may be

written as Eq. (5.71) by adding and subtracting a constant from

this coeffic_en'c (see Refs. 6 and 7). The design of the circuit

based on Eq. (5.71) _plies the use of the regenerative circuit

since the generation of the highest order derivative involves itself.

Square Root Machine

Consider the generation of the square root

y = _/_ (3.72)

from the equation

y _=_Y Z/2 (3.73)

The first step of this technique is to _Tite Eq. (5.73) as

(y - c + c) _ = ,/2 (3.74)dx

and then isolate the highest order derivative as shown in the

following equation.

The basic and scaled circuit for generating Eq. (3.75) is shown in

Fi6s.._.25s and 5.25b, respectively. Following the same t.ec_lique

used to derive a machine based on a differential equation, the con-

straint equations are written.

A dy = B dx - A22-n(y - C)dy (5.76)

is the defining equation for the machine, and

AIC - Ylmax < 2n " i (5.77)
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t 1_ ,, c,_dy C,L2 .,

dx

"!. Cl -'Z"

(a)Basicdesign.

A22-n(y-C)dy B (Ix-A22"n(y-C)dy

(b)Scaleddesign.

F_jure3.2_. - Regenerativecircuitsquarerootmachine.

I _ dx

I !
Figure3.26. - Scaleddiagramforfour-stagesquarerootmachine.
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is the counter limiting equation. From these equations the scale

factors may be computed by

A = 2n/c, B = 2n"l/c2 (3.78)

w_lere C is chosen such that it satisfies the inequality

1 -
Based on this design_ Fig. 3.26 gives the computed scales and cir-

cuit for a four stage regenerative circuit square root machine.

The output of this machine together with that of the desired output

is sho%m in Fig. 3.27.

Other Regenerative Circuit Me.chines

The natural logarithm machine

y --_ x (3.8o)

may"be designed as a regenerative circuit by the equation

, )dy_ dx + x[i - _, dy (3.81)

The circuit for generating this 9anction is shown in Fig. 3.28.

The quotient machine

z = xlY (3.82)

may be designed as a regenerative circuit by the equation

= a y - a) dz + z dy - (3.83)

The schematic circuit for this function is shown in Fig. 3.29.
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Figure3.27. - Outputof regenerative
circuitsquarerootmachine.

__ ! '-_ /
Figure3.2:8.- Regenerativecircuitiogrithmmachine.

,r
Figure3.29. - Regenerativecircuitquotientmachine.
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J

CHAPTER IV

PIECEWISE POLYNOMIAL MACHINES

Polynomial Machines

When a function to be generated is available only as empirical

data (e.g., such as in sampled data systems) then the design must

be based on generating an approximation function. Variot_.sclasses

of approximation functions _nd techniques for obtaining approx-

matioiis have received considerable attention in the literature

(e.g._ see Pef. 14). A particularly convenient form for approxi-

mating a continuous function is that of a polynomial. .Thegeneral

polynomial

- a2 x2
amxm am-1 xm-I + + _ + alX + a 0 (4.1)f(x) = m--q--.+ (m - i).' " "

may be generated by the circuit shown in Fig. 4.1. However_ it is

usually the case that all the data is not immediately available for

generating the function over its entire range_ or if it is available

the polynomial needed to meet the accuracy requJzrements is of ex-

cessively high degree. In these applications the requirements of

the problem may be met by using a series of relatively low degree

polynomials where each polynomial is used to fit data only in a

restricted range. Such machines are called piecewise poly_omlal

machines.

Because of their wide spread use in applications (see Refs. 9,
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I!, l_, _ni !5) and also because _h_y can be realized with relatively

simple circuits, this c_pter will be devoted exclusively to de-

scribing a series of machines for generating piecewise polynomials

arising from finite difference techniques. These machines are

groupei into _wo broad categories based on applications; i.e.,

interpolation or extrapolation. Each machine of this series will

generate a low order polynomial fitted to data available at eTaal

intervals of the argument, in passing from one segment into the

next new data is introduced. The form of the data in each case is

simply generated from the empirical data.

In order to facilitate the description of the machines in the

next two sections, ordinary difference notation wiJ1be used. In

particular, a_ is the value of the independent variable where the

value of the function is obtained; i.e.,

f(_n.) = fn C_.2)

The quantity _ represents the spacing of the independent vari-

able, and _._ _, ., _ are the successive differences which

may be obtained from lower order differences as follows:

2k._= fn+l- fn

7. . n

Am : Am-I - Am-I (_.5).u n+l n

In for_.la_ing the app:'oximation formula which _sses through

the giv6n points, it is converient to display the_e -_rious differ-

ences in tabular form as shown in Fig. 4.2. From this difference
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f-2

f-1 _'-2 ._ Gregory-NewtonBackwardformula
A/_-2 ,,3

f0 -1 2 "'-2 Newton-Sterlingformulaew,on-ese,,orou,a
fz A1 _o_......z_3
f2

.t,l O_
_i Gr_ory-NewtonForwardformula

ZXo
f3

(a)Directpathdifferenceformulas.

Newton-GaussBackwardformula

fo

Newton-GaussForwardformula

(b)Brokenpathdifferenceformulas.

Figure4.2.-Differencetableandpathsofdifferenceformulas.
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table, alternate forms of the approximation formula may be derived

dependent on the differences which are utilized_ i.e., on the path

through the differencc table. The paths of some of these formulas

are shown in Fig. 4.Z. The form of the formnla which will be

utilized in the following discussion will be such that in each case

the value of the variable x will vary frov.,0 to 1 in the interval

of interest.

Interpolation

A piecewise linear interpolator can be obtained by passing a

linear polynomial through successive pair of points of the function

to be generated. This scheme is illustrated in Fig. 4.5. A linear

polynomial is generated which passes through the points P0 and Pl"

At the point P1, the point P2 is added to the scheme and a linear

po__yuomial ib generated which passes through the points P1 and P2-

This procedure may be expressed in terms of ordinary differences by

the Gregory-Newton interpolation formula; i.e.,

f(ah + x_) : fn + _nx (4 4)

The first derivative of this formula is

_'(_ �x_): _n (4.5)

This interpolation formula may be generated by the linear polynomial

generator shown in Fig. 4.4a.

The coITesponding equation and its first derivative for the

next interpolatiun interval is given by,

f(_+l+ x_) : fn+l+ _+lx (4.6)

_'(%+1 + x_,_): _n+± (4.7)
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P2

f(x) P0

X

Figure4.3. - Schemeforpiecewise
linearinterpolation.

•.. An+z,An+l -- An

(a)Firstdifferenceinputdata.

dx

fn

'n
dx

t

.... fn+3,fn+2--4 fn+l

(b)Functionvaluesinputdata.

- Figure4.4. - Machinesforpiecewiselinearinterpolation.
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At the end of the first interval of the values of the D_nction

and its derivative given by equations (_.4) and (8.5) are

f(ah + _xo)= fn + Z_.= fn+l (4.8)

5a:,f'(o._n + 6_.o) = ,An. (4.9)

The corresponding values of these two quantities needed at the start

of the next interval are given by Eqs. (4.6) and (4.7) and are:

°_" _ _ '4.10)"_u&a+l_ = "n+l

=

By direct computation it may be verified that in order to proceed

from one interval to the next, the quantity _ (which is 2h+1 - 2m)

needs to be added to the setting of t._ BRM, and the output (i.e.,

the end point of the interpolation interval) need not be modified.

However, since adders have been excluded as basic design elements,

the same result may be attained by transferring Zhn+1 as the set-

ting of the BRM (since 2h+ 1 = 2_ + _). Consequently, the circuit

shown in Fig. 4.4a may be used for piecewise linear interpolation

of a function by transferring successive first difference as set-

tings for the BRM in order to proceed from one interval to the next.

The circuit derived above is well suited for an application in

which an incremental encoder is used to generate the input data. If

an absolute encoder is used to generate the primary data, then the

above circuit may be adapted for this input by using the defining

equation for first differences_ i.e., Eq. (4.5). This circuit is

shown in Fig. 4.4b. As in the previous case, only one new piece of

information must be transferred into the circuit in order to pro-

ceed from one interpolation interval to the next. However, in this

1966018643-097



89

4_

case, before the new information, i.e., _n+_, is transferred as the

settinE of the lower BRMj the value of the lower BP_Mj i.e., fn+l'

must be transferred to the upper one.

Tw.n_i_o_ _,,_o �¬will be derived. .The

schem" for the first one which will be called the back interval

quadratic interpolator is illustrated in Fig. 4.5. A quadratic

polynomial is generated which passes through points P0, P1, and

P2" This polynomial is used to generate the curve between points

P0 and £1. The point P3 is then added to the scheme and a

quadratic polynomial is derived which passes through the points

P1, P2, and P3 This polynomial is then used to generate the curve

between P1 and P2"

This procedure may also be conveniently expressed by the

Gregory-Newton quadratic interpolation formula; i.e.,

f(_+x_) =fn +_x+x(x-l)

The successive derivatives for this formula are

I _x (4.53)_,_'(_ +x_) = (_%-_ _) +

(_)2_,,(_%+x_)=_ (_.14)

The corresponding equation and its derivatives for the next

interpolation inter_al are:

_+i) x +_+I x2 (4.i5)
1

f(0_n+I + x_) = fn+i + (An+l - _

1
8mr' (a%n+1 +x_)=_+l-__+l+_+lx (_..le)o

. (_)2f"(_+l+x_)=_+l (4.17)
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X

Figure4.5. - Schemeforpiecewisequa-
draticinterpolation(backinterval).
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Consequently, the correction to be added to the second deriva-

tive, first derivative, and function at the end of _:heinterval in

1
order to _roceed to the next interval are _+i' -_ _+l' ang 0,

respectively. From this formulation, however, addition is required

in order to proceed from one interval into the next. A formulation

of this process which leads to the elimination of the explicit

adder is to splinter the polynomial given by Eq. (4.12) into the

following two polynomials.

_ x2fa(%+x_) = fn+%x +T (4.18)

fb(a_n + x_) = _-_-x (4.19)

where

f(% + x_) = q(_ + x_) + fb(_,n + x_) (4.20)

The first and second derivatives of Eq. (4.18) are

(_)fa'(_+ x_) =_ +_x (4.21)

_f"
(8_) aC_n +<x_x_) Z_n (4.221

The corresponding splintering oi'Eq. (4.15 ) yields

q(%+l+ x_) = &+,+ _+lx+_A x2 (4.23)

(S<_)fa(_n+1 + x_) : _n+l + _+l x (4.24)

I!

(8_)2fa(_n+l + x_xo)= 4+1 (4.25)

Consequently, no correction need be adder to the first deriv_-

tire in generating the function fa" Eqs. (4.18) and (4.19) may

then be used to design the circuit shown in Fig. 4.6a. It will be

noted that in order to proceed from one intex-tal to the next, only
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(a)Seconddifferenceinputdata.

(b)Firstdifferenceinputdata.

2dx --_ fn........
fn+l

(c)Functionvaluesinputdata.

Figure4.6. - Machinesforpiecewisequadraticinterpolation(backinterval),
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new second difference date.need be transferred to set the levels of

the leftmost BRM.

Based on the defining equation for second differences; i.e.,

Eq. (4.3), t_ machines shown in Figs. 4.6b and 4.6c may be obtained

directly from the machine shown in Fig. 4.6a. In these machines,

previous first differences and values of the function are trans-

ferred directly from the lower BRM's to the upper ones before a

new first difference and a value of the function, respectively, is

transferred into the-lowez oue in order _o proceed from one inter-

Val into the next.

The scheme for piecewise front interval quadratic interpolation

illustrated in Fig. 4.7 may be derived by use of the Newton-Gauss

interpolation for_lla given in the following equation.

f(ah + x_) : fn + x An_ 1 + x(x + l) _-l (4.26)2

If Eq. (4.26) is implemented directly, then the first deriv,%-

1
tlve and second derivative must be corrected by adding _ ziS_l

AS_I, respectlvely, to these quantities in order toand proceed

from one interval to the next. The explicit need for an adder may

be avoided in a manner similar to that used in the previous discus-

sion by splintering Eq. (4.26) into the following pair of equations.

i x2+ _) = q + x _-i+_ _-l (4.2_)

1
fb(%+x_) =__-l x (4.2B)

Based on this pair of equatlons_ the circuit shown in Fig. 4.8a

may be derived directly. The machines shown in Figs. 4.8b and 4.80
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P2 P3

_i,__°

P1o,_J
f(x) //

PO//
0

X

Figure4,7. - Schemeforpiece_isequa-
draticinterpolation(front interval).
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•..4,1.4--1 4-1
(a) Seconddifferenceinput data.

An_z _
___ "fv =

fiX

...An,_n ':
J ":,

(b)Rrstdifferenceinputdata.

, '" 2_x.--_ , .-_ J,

dx--_ .... . "

-t 14/•" fn+3,fn+2 fn+i -" "

(c) FunOlonvaluesInput data. -

Figure4. 8. - Machinesfor p|ecewisequadraticinterpolation(front interval). "-

3
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- . " . . ..
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are adapte_ from the circuit shown in Fig. 4.8a by using the defir.i-

tlon of the second difference given in Eq. (4.5).

A cubic interpolator may be obtained from the Newton-Gauss

interpolation; i.e.,

1

fC_h+xSo_) = fn+X 2h+ } x(x- 13 f__l+ g x(x- l)(x +11 2__ 1 (4.291

However_ in this case the discussicn will be limited to using this

for_ala for central interv_.l interpolation only. This scheme is

illustrated in Fig. 4.9. The points PO, PI, P2, emd PS are used

to generate an interpolation formula for interpolating between P1

and P2" The point Pi is then added to the scheme and the points

PI, P2, PS, and P4 are used to interpolate between points P2

and PS-

Eq. (4.29) mey be applied directly to yield a central interval

cubic interpolator. However, in this case the third, second, and

1
first derivatives must be corrected by adding _-_l' 0, and _ A_41

to these quantities_ respectively, in order to proceed from one

iuterval to the next.

A configuration may be obtained which conforms with the design

practice of not using an adder by splintering Eq. (4.29) into the

following pair of equations.

fa(ah �x_): fn + x - g_-i + _-_-I + _-4-I (&.30)
\

x (4.31)fb(_n + xS_) = -[ n-!

Based on this pair of equations, a circuit may be obtained such

that the function, its first derivative, and its second derivative
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Plf
f(x) /

PO ,/
o

X

Figure4.9. - Schemefor piecewise
cubicinterpolation(centralin-
terval).
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need not be changed in order to proceed from one interval to the

next This circuit is sho_-pnin Fig. 4.10a. The circuits presented

in Figs. _.lOb, 4.10c, and _.10d are modifications of this circuit

based on the definition of the third difference.

Extrapolation

Extra!olation presents an added problem iu that the output .f

bhe machine must also be corrected in order to proceed from one

interval to the next. This is illustra%ed in Fig. _.ll for linear

extrapolation. A linear polynomial %hrough PO and P1 is used

to extrapolated the values from F1 to P_. The point P2 is

then added to the scheme, and _ linear polynomial through P1 and

P2 is used to extrapolate _he next interval. The predicted value

P_ and the new value F2 cam be expected to be different. Con-

sequently, the output must be corrected for this new value P2- In

order to avoid _tti_ a jump in the output function at this point,

the scheme vhich will be employed is to _tt the correction in

linearly over bhe entire next inter_l. This scheme (as we]/. as

that of .D!adratic extrapolation which will be described next) is

closel_ related to the Porter-Stone,an digital filters (see

Ref. 13) and may be extended accordingly.

The Gregory-Newton backward finite difference formula may be

used to design the linear extrapolation machine; i.e.,

f(_ + ×_) = fn + _-i x (4.32)

The corresponding formula for extrapola%ing the next interval is

f( +l+ =  n+l+ (4.33)
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Figure4. I1. - Schemefor piece-
wiselinearextrapolation.
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£f these formulas are applied directly, then the circuit must

be corrected at the end of the interval by adding 4-1 to both the

function and its first derivative in order to proceed into the next

interval. This, however, would cause a jump in the outpub function

This jump may be avoided by putting the correction term in the out-

put in a linear manner ow_r the entire next interval. The result-

ing polynomial has the property that its initial value corresponds

to the end point of Eq. (4.32) and its final value corresponds to

the end point of Eq. (4.33). A polynomial which satisfied these

constraints may be written as follows:

f(ah+I + xS_) = (fn + 2h-l) _ _ + _-l) x (4.34)

The second difference in Eq. (4.34) may be e!_D_-_ted by

using the defining equation given by Eq. (4.3). This substitution

. yields the following equivalent equation.

f(%+l + xtm) = (fn + &n-l) + (2&n - &n_l)X (4.35)

Eq. (4.35) may be implemented to yield the linear extrapolator

shown in Fig. 4o12.

The scheme for quadratic extrapolation is shown in Fig. 4.i3.

The quadratic equation through points PO _ PI, and P2 is used to

e_:trapo]ate the data to the point P_. The point P3 is then

added to the scheme and can in general be expected to be different

* The quadratic e_lation through the points PI' P2' andfrom P3"

P3 is then used to extrapolate to the point P_. in order to

avoid putting a jump in the output when new information is added
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PI ,,'_/
,,o/

/
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0

X

Figure4.13. - Schemeforpiecewisequa-
draticextrapolation.
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to the scheme, the correction m.ay be put in the output _'__a

linear manner over the entire next interval in the same manner as

that employed for linear extrapolation.

The Gregory-Newton backward difference formula forms the

basis of the quadratic extr_polatlon. This formula may be written

as follows :

f(_ + _) =fn+ __-I +x(x+ iI_-2 (4,36)2

The corresponding formula for the next interval is:

f(_n+l+ x_) = fn+l+ x _h + x(x+ i)p _-l (4.37)

If Eqs. (4.56) and (4.57) are implemented directly then the

quantities _-2, 5_-2/2_and I-2 must be added to the output

function, its derivative, and its second derivative in order to

proceed from one interval to the other. As was indicated earlier,

the jump in the output function can be avoided by putting in the

correction over the entire next interval. A polynomial which

satisfies these constraints (i.e., has the end of Eq. (4.56) as

its initial point and the end of Eq. (4.57) as its final point)

may be written as follows:

A2n-i + x+ 2 xf(%+l+ _) =fn+ _%-i+_-2 + +--2-- - ----

(4.3b)

Substituting the difference relationship given by Eq. (4.5)

into Eq. (4.58) yiel"
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/ "2-5 Q 2) _-i X2 /.4- + - x - 2 k•[%-i _-I _- *-- 4.39)

Eq. (4.59) may be ._plintered into the two equation

f_(%+_+x_)=fn+_.-1+_-2+___x+---_-_x2 (_.4o)2

to yield the circuit shown in Fig. &.l_.

The circuits shown in Figs. &.12 and &.l& may be readily ex-

panded by use of finite difference relations (as was done for

interpolators) to yield circuits which accepl -t_oD_l values

and first differences as the primary source of data.
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CHAPTER V

C0NCI;JSION

Summary

A han_ul of _ ...._ _=_ been ..... ___o ,.... _ _ in the literature

which B_ve been designed to meet the needs of special purpose

digital computer problems arising from real time applications.

The oro_nization )f these circuits is to utilize simple counting

techniques as the basis for completing and result in a simplicity

of _rdware which make them attractive for such special purpose

applications. The design of these circuits have been examined in

this study with the objective of (1) "explaining" the circuits and

(2) genera]izing the design philosophy such that new c_rcuits may be

_dmitte_ with the same organization. In order to be specific

we limited _he principle design elements to three fundamental

units. The elements are (1) the binary rate multiplier which is a

means of sr ling down a pulse stresm to some specified fraction,

, ) _hc counter, and (3) the anti-coincidence circuit which is a

means of separating pulses arriving at a counter simult_qeously.

These design elements are represented as operational units

w_ich may be used to describe the machines. 0pezational techniques

are then used as the method of s_mthesis. In particular, a counter

is utilized to represent a first or]er difference equation and a
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counter in cascade with a BRM is utilized to represent approximate

integration. The computational errors; i.e., rounding-off error

and truncation error, introduced into the machines as a result of

treating the principle design elements as operational units are

identified and studied in detail. The rule of round-off, which is

simply stated in conventional computers, is not as easily formu-

lated in these machines. Definite results, however, "_ere obtained

and the rounding-off error was shown to be dependent on the start-

ing value of the BRM counter as well as n, th_ number of stages.

The approximate error bound of "7/9+ n/S for the generated

round-off error proved to be disappointingly pessimistic for pre-

dicting the propagated error for design purposes. Neverthe&ess,

having identified these two sources are errors _ermitted us to

obtain better results experimentally by two methods; (1) in-

creasing the number oi"stages and (2) changino_ the round-off error

by changing the starting value of the &_4 counter.

The method of s_u_thesis is presented i_ three parts; (1) ex-

oressing the function to be generated as a differential equation,

(2) expressing it as the fixed point of an iterative process,

and (3) expressing it in terms of a regenerative circuit which

is presented. The method of synthesis is explicitly stated and

is satisfactory in that all P_uown circ .its may be directly obtained

from it. A wide variety of othe_• l'vzct_ons are also obtained using

. these synthesis techniques. _ny of these examples are illustrated

a,_d in some cases actual experimental results were obtaine_, and
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discusse_ with the machine.

A series of machines is presented for interpolation and ex-

trapolation of a function which is available only as empirical

data. In particular, the function is generated over its entire

range by a sequence of low order polynomials. Finite difference

technlquss are used to describe the polynomials. The order of

the polynomial is limited to a cubic for interpolation, and a

quadrstic for extrapolation since these seem to be the important

cases in practice. Nevertheless, these techniques can be easily

extended to include higher order po_:_omials.

Recommendations for Further Investigations

We feed that the choice of princip e design elements has

been correctly limited to units that operate as incremental devices.

It would be interesting to investigate other components in this

framework. In selecting the new components _o approaches appear

apparent. First, the components used in this study may be sub-

divided into smaller functional units with a view of studying sim-

plification methods of the final design. S_condly, new functional

units may be introduced with a view of admitting new machines.

However, if components which operate on the whole word are included

they should be simple decision type circuits (e.g., sign and _ag-

nitude comparators) a_d not new fundamental units llke an adder

which Would dominate or supplant the other components.

It is expected that using wc._st case conditions for obtaining

error bounds would not produce satisfactory design results which
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may be used in the whole spectrum of prob].ems. The study which

should produce good results would be to considem each clrcu_t

individually and obtain deterministic design results which can be

applied to that circuit. Ir_particular, an algebraic _.pproach as

%_s used in Appendices A and B mig_It yield satisfactory results

f0r processes which i_volve only addition and multiplication such

as the generation o_"polynomials. For transcendental functions

the bounds may be obtained by experimental techniques or perhaps

b3: comparing the desired function to one which is attai._ble by

algebraic means.

New methods of synthesis should also be sought either to

include the pathological cases discussed earlier in the report

or to exclude them as possible machines.

Other piecewise c_ve fitting machines should also be stuided,

especially those in which f_nctions other than low order polyno-

mials are used and those in which the first and higher order

derivatives are kept continuous.

The invest;gation of these machines would be facilitated if

hardware and good display facilities were available -whichwould

permit the circuit to be easily fabricated and studied. We do

not have in mind the design of still another general purpose com-

puter since it is felt that these circuits best serve the needs

of special purpose applications.
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APPENDIX A

MULTIPLICATION _ROR BOUNDS (Z_0 STARTING)

In this section the error equation of an n-stage BRM whose

coum_ter starts with zero will be analyzed with the objective of ob-

taining tight error bcunds. Nevertheless, some of the intermediate

results which will be obtained in this section are interesting in

their own right. Because this analysis is involved, we will proceed

formally. The basic outline is to use Eq. (2.8) to find the points

where the _ _imum positive value is attained and then evaluate the

equation at these point_. In a similar m "ner, Eq. (2.10) will be

used to find the minimum: negative value.

We begin by stating and proving Lemma A.1.

Lemma A.1 A sufficient egndition for E given by Eq. (2.8) to

attain i_s maximum v&lue i_ t._t xi = Y-i"

Eq. (2.8) may be rewritten as a bilinear expression such that

the terms which sa-e dependent cn either xi or Y-i are grouped

together. The quanity A in the resultant expression is independ-

ent of either xi or Y-i"

- _-xiY-i " _-zi Y-i-i + _ Y-i-2 + • " " + 2i_----_ Y-n

1 /1 + 1 + + __xl)l (A.I)Y-i[_ xi-1 _ xi-2 " " " 2i-i

By direct evaluation the value of this expression is as follows:
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E(O,O) - A

_.(o,1)= A - _- Y-i-1 • •�2t_--'--ff Y-n,

E_I,0) = A - _ x1_1 + . . . + 2i.---[

Moreover, for the specific case when i is n then the value of

_. (_,.I)is

E(O,O) = A

E(0,1) = A

l(l Xl)E(I,0) = A - [ [Xn°] + . . . + l--!--2n-i

g- g Xn_1 + .. .+2_-_ x:

This lemma is proved by observing that the value of E when

xi = Y-i = 0 is always greater than or equal to the value of E

in both cases when xi _ Y-i and that for the nth component the

value of E is always greater when Xn = Y-n = I.

Based on this lemma, the m_xlmum value of Eq. (2.8) will be

found by finding the maximum of the quadratic form expression

Q(_l,:_, • • ",_) - !'h,_, • • .,_,)M (A.2)

Theorem A.I For all valaes of the components xi,

l

Q(l,x2,x 3, • . .,xn) > Q_0,x2,x5, • . .,xn)

i"

Eq. (A.2) may be rewritten such that A is a quadratic ex--

pression independent of k1.
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/i [i [i 1 Xn)
Q(Xl,X2, . . .,Xn) = A + xi__- x2 - x3 . . ° -

(A._)

By direction evaluation of Eq. (A.3)

Q(O,x2, . . .,Xn) = A

Q(1,x2, ,Xn) =A+(_ 1 _ n)
• • • - _x 2 . • . - x

Since

1 1 1 1

- 7-x2 - _x 3 - . 2n xn _ 0

then

Q(l,Xl,X 2, • . .,xn) > Q(0,Xl,X2, • . .,xn)

Theorem A.2 For all values of the components xi,

Q(Xl,X 2, • . .,Xn.l,l) > Q(Xl,X2, • . .,Xn_l,O)

This proof proceeds similar to Theorem A.I. Q may be re-

written as

_(x_,x_.,• • .,,_-_.,.,_(½-_Xn-_- • • • - --_.__) CA.,)
where A is independent of x_.

By' direct e_,-a.luation

_xl,x2,...,_m1,O)--A

Q(Xl,X 2. . .,Xn.l,1 ) = A + 1 1 Xn 2 1
- " g" _ 1 - " " 2nXl

Therefore

af_,x a, • . .,_.l,a) > a(_,x 2, • .-.-,N.Z,O)

•J f

Theorem A.3 For all values of the components xi, .:

) - ".'&vL'"

2:%
-.- ..

x .
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where x-i is the complement of xi.

The difference

Q(1,x2,x3' " " ",Xn-i,1) " Q(I,_2'_S' • " "'_n-i'I) =

[

1

(1,h, . . .,Xn.l,1)_ - (1,,_, . . .,_n.l,1)M

Xn-: _-]

(A.5)

may be written equivalently as

! i(x2' " " "'Xn-1)K " "(_2' " " "'_-n-1 )K (A.6)

where
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Expanding Eq. (A.5) and aslng Eq. (A.7) to simplify the cross

product terms, then a typical-term x i may be written as

_-
xig" _ 2n-i+l"r" g " " •" 2_.-i. _

=xi - en_i;l-¥ =g - • •• "

= xiL2 i + =_xi +_i) n-i+l" (A.8)"-- 2n._+_J+xiK2n-i+l "l

Since (xi + _i) - i, then Eq. IA.6) is independent of the xi

variable m_d the contribution from this term is

: _ i+i= (A. •
: S

" Similarly the contribution to the differerce exp.-essed-in .:, ,_,,

Eq. _A.6) from the term invol":r_ xn_i+I is -..

_.-21._': __ ' " _A.l0)
J

Consequently, the contribution to the difference expresfad b_ " "

Eq. (A.6) by each elem_.nt may be "paired by the eontribution fr_ -..o
_

smother element such as t0 cancel each •otherout of th_ expres_i_dn._ " :

If" "n- is. odd_ then-+.he-rntddle _".earmot be po.ired..-/gA'_(sinee.

this is the (n + i)# term, then by Eq. (A.9) its contribution is

_+1)12_. ) ---_o , ,, ---....-

"; " (A.._S):.i_-.-'""-_'-- Therefore the value of the differenceshown by'Eq. : "
] _ : -. _ -- - ." __..- v -..

equal to zero. This implies that• - _;. _ ....
, _ j. _, ._ " -,-_ _ - -

' - - -- -.,- =Q(.',h, ..:..
. _ -.....,.. . ..>.-....-._..:"_--..".,__-_.

=.- ..#

.- _.,"_ .- _- -i--- "
- _ "- . . _ _, _:_ ". " .-._, -• o .

: -_ ": . _ -. .'. -_ " • _ " ._ '_.'.

. .. ::- _._-. - . , .- -_..: ,,.._q._, j ".:---
- _. " - . . . . - - . ,. .. _ - . "-;._° - ._-
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Le:_n..a.-..Z. For v :- 2,xZ. . . .,xi and _ = 1,O,!.0, . . .,l,C

(,(LV,0,a,i) > Q(!.-,,l,a,l)

_zhere -_ a_n.i[_ are the componen-L by eo__penent complement of v

_:nd a, respectively.

_j Tneorez A.5 it is noted that

_&%.s.) v _._.2_.}.,,. l = _(,_.-: ) v j v)o.)

i_nerefere, the difference between the t_-o q,_adratic forms of

the le.m__acan be _-_x_ressedas

= Q(1,_, O, a,1) - Q(i,:,-,O,a;1) (A.n)

Partitioning the M matrix of Eq. (A.II) such that M1 and

M2 are compatible "_ith the vectors, %hen 8 may be written as

',Co>'8 = (i,_O,a,! -- A l,_O,a,l

-- -
\o/

But it will be noted that

(1,%0,a,1) = (1,_,0,_,l)
_o/

Therefore

8= (1,_', 0, a, 1)M2(1) - (1, _, 0, E, 1)M2(1 ) (A.15)

It will now be proved by induction on the length of a that

8 >_ O. It may be immediately verified that B = 0 for a of

length zero. Assume that _'k>-0 where 5k is the value of 8

when a is of length 2k. It will now be verified that 5k+1 >_ O.
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position in the vector, and the vectcr itself is displayed as a

column rather than a row iu order to _.howthe correspondence be-

tween the ter_.,sw_ch _st be _a!tip!ied to fo_ the value.

Multiplying out the terms of Eq. (A.14), then

i (_i +i _-_I + + i _2J22k+5 _ _ 2i_2 ,

I !(i i ]. ) i$ + $+ . . . + 22k_ 2 2i+2k+2

,221;+5 _ xi_I _ • . + 2i_---_ x

5+5(1 ] 12. ) 3- _ _ + _+ " " " + 2_.- -i+2k+4ga

5 ' i- i

22k+5

Using the relations

and

i ]. 4 / \

1 + _-+ . . . + 22k_-----_= _-[i -

then Eq. (A.15) becomes

i-2

1 1 1 _'l _
5k+l = 5k + _" 2i ´�+T� �-22_4"4d_J _ xi-j

j=O
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_,t by direct evaluation

i-2

1 _i_..- 1 1 < 2 1_+4 ___--- xi-0 + 22k+4 2i-i 22k+4 - 22k _'_

j=O

Therefore 6k+1 > O.

Lemma A.5. For v = x2,x3, . . .,xl and a = !,0#i,0, . . .,i,0

Q(I,V,I,o,a,I)>_Q(l,v,0,o,a,1)

vhere • and _ are defined as in Lemma A.2.

F_oceeding in a manner s_'milar to Lemma A.2, it is first noted

by Theorem A.$ that

Q(1,v,O,O,a,z): Q(m,_,m,l,_,l)

Therefore, the difference between the two quadratic forms of

the lemma can be expressed as

8 = Q(1,-_,l,0,a,l) - Q(1,_,l,l,_,l) (A.16)

Partitioning the M matrix of Eq. (A.16) such that M1 and

M2 are compatible with the vectors, then 5 may be written as

5 = (l,_,l,O,a.l) + (l,._,l,O,a%l)_ 0

• D7

(A.17)
But it will be noted that

. Therefore

8 _ (l,_,1,o,a,1) - (l,_,z,l,a-,1_- (A.iS)

-p
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Using 5k to denote the value of 6 when a is of length

2k, ih will now be proved by induction on the length of a that

1 1 1 -- 1

> _ _i+22_ _I-i+ ••-+ x2+ > 0-- ji+2k+l 2i+2k+2

(A.19)

First we note that for a of length zero

/._3 _ i+3

._ r_i/2i+3_rl r-i/2i+2 i -.../2
r_'2 • x-2 • _2 ..i/2i+2
x5 • x3 • •

8o-- ........ . . t: "
x-_ 11/i_ _i I-i/8 _'i :_/_.6
!_.+li-11a ii+i|-i14 _li+1 -m/,_

o,-+_1-iI, :_+_\_/_. _._+___/_
_ i - i --

-_ xi+_-xi-u.+ -••+_ _2+-!-i (A.2O)2i+l 2i+2

The notation used in Eq. (A.20) is similar to that used in

proving Lemma A.2.

Assume that 8k> O, it will no_Tbe shown that 8k+I > 0
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/ 1 \ I/2i+2k+5!-I il -i/2i '

_2 "i/21+2k+4 _2 ! •%

_ _ / -_/_2_+6 _ i
li+l/ /" li+l I

8k+i = _ li-:-s_I - o !

I " _L•

0 :! "
ii+2k+l [ 10i+2k+ 2

li+2_+3oi+2_,-1/,a o _.'_, -114 1 '

\ 172 _1i+2_+skli+2k+_ • I , , o I

[{. 4_/2f+ek Øill 21+2'=+_
X3 •

xi xi
1 !i+I
1 i!+2

- o . + oi+3 (A.21)
1 li+4 .

0 , • Ol_'2k+li "
-1/41 • li+2k+ 2 ,

_i/_II/4_,: 1/2 / 'li+2k+Si i/2 '

Multiplying out Eq. (A.21), then 8k+1 becomes
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1 i( 1 ]. ) 1 x--i_5k+1 = 5k + _- _ 1 + _+ . . • + 22k+2 22k+--_ . . .

2i+2k+ 4 xz 1 + ..... +21+2k+5 4 22 22k+5

5 - 5 -- 5 i

+ 22k+----_-xi + . . . + 2i+2k+4 xz + 2i+2k+5 + 2

- _ + + . . . + . 22k+ 6 x.i • . .

. 4 -- _ (A.27)
2i+2k+ 4 x2 2i42k+ 5

Equation (A.22) may be reduced to

1 x-i_ . 1 -- 1
5k+1 = 5k 22k+5 • . 2i+2k+ 5 x2 . 2i+2k+ A

(A.23)

Using Eq. (A.19), then the right hand side of Eq. (A.25)

becomes

i - i >l._!_" l - l
2i+2k+5 x2" 2i+2k+4 22k+ 5 _1 + • • • 2i+2k+ 5 x2 + 2f+2k+4 > 0

&_eorem A._. There exists a v* such that for all v

Q(1,v%O,a,1)>_Q(!,v,xi+1,a,l)

where v and a are defined as before.
l

First, we note that Q(l,_,O,a;l) > Q(l,v_l,a_!) because sup-
@

pose it were false then there would exist a v** such that for all

Of V

Q(z,v**,_,a,z)> Q(!,v,O,a,1)
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But _Tom Le_m_ A.2

Q(l,_',0,a,l) >_ Q(l,v**,l,a,l)

Therefore, a contradiction exists.

Moreover, we note that

Q(1,v_,O,a,l)>_Q(l,v,O,a,l)
%

that is, there is a largest.

Therefore, Theorem A..4 is proved by choosing either v** o_;

v** for v_ that is, whichever make Q(l,v*,0,a_l) the largest.

Theorem A.5. There exists a v* such that for all v

Q(1,v*,1,O,a,1)>_Q(z,v,_+1,o,a,1)

First, we note that Q(l,v_*,l,0,_l ) >iQ'_l;v_0_0,_)l) becat{se

suppose it were false then there Would exist a _* such that for

all v

wx-

a(a,v**,o,o,a,1)> a(l,v,Z,o,a,1)

But from Lemma A. 3

_.. W

Q(l,_,l,O,a,l)_>Q(1,v_,O,O,a,l)

T.1%erefore,a contradiction exist.

W@

Moreover, a v*;_ can be choosen such that

q(z,-_*,o,c,a,1)>_Q(1,v,O,O,a,l)

Therefore

Q(1,v*,l,O,a,l)> Q(Z,v,xi+l,O,a,l)

T_eorem A.6. _%ere exists a v* such that for all of - v

Q(1,v*,O,l) >_ Q(1,v,xi+l,1 )

l't[rst,we note that there exist a v** such that

Q(1;;_',0,1) >_Q(1,v,l,l) , because suppose it were false then there
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Would exist a v_6k such that_for all v

Qf_---g* 1 _ > Q(1,v,O,1)

But by Theorem A. 3

Q(_,_*,o,_)--,Q_z,v**,1,x)

T_erefcre, a contradiction exists.

Moreover, a v_ can be chosen such t_t

Q(1,v**,o,1)>_Q(1,v,O,1)

Therefore

Q(1,v*,o,l)>_Q(1,v,xi+l,l)
r > .)

_"" It will now be demonstrated by an example h/'_0 these theore_
..s

can be used to obtain the _'alue of x such tha_ the error is the :_

maximum positive value. Suppose we consider a 7-stage _qM. By .

.-. ..
Theorem A.1 and Theorem A.2 ._ "

f . . .

Q(I,x2,x3,x_ ,x5,x6,l) >_ Q(x1,x2,x3"_x_ ,x5 ,x6 ,-x;f)"q_"--.
c..

U

by-Theorem A.6 - .-

Q(I, .,x$,x,_,x_,O,l)_>- x_ 3 4 5 Q(l'x2'x3'x4'xS'x6 '&) > -_ ':' :_

by T_eorem A.5 _- "

_ I** **>Q(,x,,x3,x4,xs,- -"

by Theorem A.4

• _ _. _ ** **._.:x:_ -- _
Q(1,x2,x 3 .,0,i,0,i)j'.-_(l,-x2 ;x3 ,x4 ,1.,O,1)

by Theorem A:5 : 7

X_ . * @" ** ** . 0:,i)a(_, ,!,.o.,_,0,i)-__(_,x2 ,x_,o,_,. . . _.

"_,__eorem A.6
"-- . _.

QO.,o,_,O,_,o,_)>_Q(i,x_,_,o,_,o,_)

1966018643-138



120 -.

Putting these inequalities together

Q(z.o,z,o,I,o,z)> Q(x1,_,x_,x4,xs,xs,x_)

Moreover, by Theorem A.5

Q(1,1,O,l,o,l,])>_QIxl,_,x.,x4,x_,7_,x_)

Using the theorems in the pattern illustr_ ed bY-bhe example,

it is easy to verify that the maximum positive value will occur at

the points shown in Table 2.4. =

The maxim_ positive value of _he errOr-may be expressed con- ;
#

cisely as follows: :
- ,. ' . ;

Let E_x_k!.Oenote thlS;value foran kL stage _RM_ _Ir. l-- _ _v " ?

is -then e

-X12 + '""l-1. l " -- "-<>--.• - .. , . ",_ ::

• : " --- / "" " -" ";

- . i,,, " -- "_ • -:>_.-
: %_x_k+._)= %_/(k)+, . . - '-"" '.• . , . •

"ilk ,.Z , "'_ _

Ok+Z, %/_° . .°- "
, ik+_l:!i_.-. .... . :

r

E_al-uating Eq. (A._5)_, this yields the dlfference ,equ_tio-_-" ....-, _
,, .... _.--.-_ :.._

: " . ._.{I " --'_ :' "

- . . ,<,,_,x. !k.+_) + �,,o. -_A._-.. ,
-_ _ . 2,_'",.,,,.--..... ........ - ..

ylel6_ - "I _ "" " : " _
_ : " /'- " ' " " " "- .... - - "_-J.':"5":-.,_ -." . -.

. . . , . : . ;," . _ _ - ., : - ..... - ....-+ -.:-.:_..-:v_

_)'n' " ]_...i_ '". ._ -_L , n _ " - " - . f.,,'-" _ ......; :' _:-_,,.._.x-.;-...- ,_. 6. m._.n.,. _ -. --. --':-:.' - "_:._"_':m<
. " ' " ' " .... " ::':.:-.-* 4-" v:-.: _.-,-: ,"-'s-"-'.-::.i:::.o::'_77

.... _,W- , " . . - .- _.- " _, - . :. "'.-" ::-. ,'V",-_;:':.

___ .- . . . ., _, ,. . _ L,:._ :_.-'_:,.":-...<,.
.- " . Z _ o

• . . .--: ... : .. _.:_> : .._ ... :_ -:.::.'_...
:, " . , .. .- .

,_- ,. - - _. . . . - ._ . -. . ,. ., .,, ... -._, .j

• -....•" "" -. "- """-,-.-....._"L'_:i¢'.'::-
: - : ".... • -_ .-.... :: '..: ,... - . ..--=._.:.:-;j.:,_,-:

• . : . - . . . . :.-• ...,_....-W._.;,._':

- - - -- . _ -_ 2 ,...--=_:.&._---.::2_.-._i-.-

. ,-, _ '."' _:.= ._--.:.'-"::--::_C-_:_,
.- " .. . -" :..." -:--.-."_..:,-:,'_;,C_J_Jl• - • - ,.- ..-, :. .-.': -:: "',.'_-._..;.*._:E_.
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Therefore, the max_'mm positive err(r of an n-stage BP_4

where n is odd is:

7 n 1 (A._)_k_(n)_ Yg+6 9.2n

If k is even, then

_1/2_ Ø�Io3 .
14 .

1 I 1

Em&x(k + 2) = 2_m_x(k)+ . . = Er-mx(k)+ g 5 2k+2

0k-I

ik+2 1/2

(A.27)

So:c,-ingt_hisdifference eq,_ationfor an n-stage _M in terms

of Emax(2) and then evallmting the r.sultant expression for

2max(2) = 3/4, yields

_max_n) = 7 n i
9"2n

Combinir_Z equations (A.26) and (A.28) gives a closed form

equation for the maximum positive error of a n-stage BRM.

Emax(n) = _- + _.+- 9.2n

By applying Eq. (2.10) the minimum negativr-value for a n

stage B_4 can be obtained. Comparing the form of Eq• (2.8) to

F_I.(2.10), it is seen that our previous results can be _Itilized

with a slight modification• In particular, the value of the minimum
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is equal to the negative of the maximum and occur at points which

are the 2's complement of the maximum value. Consaquently_ the

minimum negative values will occur at the points shown in T_.ble 2.5.
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AP_ENDiX B

MULT_LICATION _ROR BO_/NDS (ARBITRARY STARTING)

The error formulas given by F_s. (?..12) and (2.15) expresses

the multiplication error of a BRM whose counter starts with an

arbitrary value. Eq. (2.12) is the error formula resulting when the

maximum valise of the actual output is considered at the points of

discontinuities. Eq. (2.15) is the companion equation resultlr_

when the minimum value of the actual output is considered at these

points. In this section these error formulas will be analyzed with

the objective of obtaining error bounds for a BRM with this added

degree of freedom. We begin by analyzing Eq. (2.12) to obtain the

maximum positive error of au n stage HEM.

It is convenient for this discussion to define a vector b

such that

rb.l _ Y-I 1
b-2 _ y_2 _

i ] =M"-n Y-n°" (B.1)

r,

Theorem B.1 For all xk and xSk in Eq. (2.12)_ G _ ._. Ib_il.
i"l

n

Moreo_.-er,if Y-k = Xk - x--Sk then G - _ Ib_il where _Sk de-

notes the complement of xsk.
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The elements of the vector defined by Eq. (B_!) are

_-Y-I " Y-2 + _Y-3 + • • • + --Y-2n

i (1 1 _ n)
b-2 = _Y-2 - Y-5 + _Y-4 T . . . + y_

1 (1 1 1 n)b-k = _Y-k " Y-k-1 + _Y-k-? + • • • + 2n_k+1 Y-

1
b-n = _"Y-n

Since 1/2 > 1/4 + . . . + i/2 n then

b k<0 if Y-k = 0

> 0 if Y-k = i (B.2)

It is next noted that each element (xk - X_k ) may have only

three possible values; that is, 0,i, or -i. This may be verified

by direct computation.

xk Xsk xk -xSk

0 0 0

0 1 -I
1 0 1

1 1 0 (B.5)

Since IXk - XSk I <_i then
n

G = (xI - xsl)b.l + (x2 - xs2)b_2 + . • . * (xn - Xsn)b.n<L__ Ib.il
i=l

(B.4)

A sufficient condition for G to attain the upper bound of
n

" Eq. (B._), that is, _ Ib.il, is that:
i=l
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(xk < 0- Xsk ) = -! if b x _

= +l if b_ > 0 (B.S)

Ccmblning (B.2), (B.S), and (_..5)resu]t_ in

,,t i- i....
o1<o' !o 1-7--I
1 ;'_o +i !l 1o

Therefore, Y-k = Xk = x--_ is _ sufficient condition for
n

o=_ lb_it.
i=l

As a consequence of Theorem B.I the ms:ximum of G; denoted by
n

,Gmax, is such _hat Gmax = max !b.._;._ !mc_e@_.e._ch is to be
Y J=l n

followed is to find the value y where the maxin_Lm of Ib__l
i=l

is attained and then evaluating this function. Iz-order to aid this

analysis the notation b i(Y ) is introduced, where

Y = _-1_'-2'" " ",Y-n and b_.__(y)denotes the value b_i for the

vector (Y_]_,Y_2, • • -,Y-n)" For an n stage BRM_ all possible

b_i(y ) values may be obtained by n_f:_tiplying M with all possible

values of y. We will c&ll tYLispacticular matrix Br.
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_D

V

r-t r-I r-i

! ! I

C_ C_ • • • ° 03

I ! !

_I_ _Ic_
r-_ r-i r4

,.--, ,_, _1_ 0
l:I

I I I
.-Q ..Q _ _l_ _1_

i!
|l

r-t r-I • • ,r-! r-I

r-I 0 • • -0 r-I
•-'I 0 • • -0 0 _ I

(.0

• " " _ _I_ o .

• • . •
II

0 0 • • .r-.l 0 F-_

o o...o _ _ m
,I-I

i ,--I
r-II_ _ J

• _l_ o

-,-I

l I "

, • _
_l_ 0 ... 0 N be.

4_

• " _ 6
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_I_.,_l_w ,.41¢_

I

I

I

Him _I_ MI_ I,.o......I I _ I'-- r'4

r--Iloa o o o
II

_ _
,-I ,-I 0

o _ _°I_I,,_I_o
,-I 0 0 I

o _ ,'4 _oI__I00_I__Io_
0 ,-4 0 I I

0 0 ,-I

•,,-" _"I__!_ o o
,-110o_I_, ,-II_

I I

_I__I_ o _I__I_0
I I I #

tO

ii
II

I I
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_eo_emB.2. For_ _ues of y, ib_i(_)I = Ib.l(2n.y)l
This result follows by induction on the number of stages k.

It was shown as an example for the k - 2 case• Assume it is true

for the k = n - i case. Then the k-- n case is

1 2 2n'l - 1 1 2n'l - 1 1

2n an 2n _ 2n . 2n
0

B_ = Bn.l . B_.1

0

where this case is partitioned to show its structure. This theorem

is obviously true for the first row. The b.i(y) element for the

n - i case is now the b.i.l(y) and the b.i.l(2n + y) elements of

the n case; and the b.i(an - y) element of the n - I case is

"ow the b_i.l(2n - y) and the b.i_l(2n + 2u - y) elements of the

Bn case. By the induction hypothesis Ib.i(y)i = Ibi(2 n . y)!

for the n - 1 case. Therefo:e, these elements re.-the nth cas:

yield

I,B.,,

and

lb.:I-1 (2n - Y)l = ib.i.1 (2n + Y)! (BoS)

Substitutimg u = 2n - y into Eq. (B.8) then

Ibi.l(U)l = Ib I.I(2n (�-u) I

which completes the proof•
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Lemma B°l. rl_nereexists a y* in the domain

0 1 0 . ° . 0 0 < y* < 0 1 1 1 . . 1 1 such that

_ _.t(Y_)1 >_ Ib.i(Y) 1•
i i

'Eqis theorem states that Gmax is attained in the domain

0 1 0 . . . 0 0 < y < 0 1 1 . . . 1 1. As a result of Theorem B.1,

the ssarch for a point where Gmax is attained can be immediately

restricted to the y domain 0 < y <_l 0 0 . . . 00. Consider Bn

for these values of y.

I I 2 i i

2n 2n "_
i

o

_. ---'! % o_R o...

1 " • /• °

0 0 . . .

The vector results from the y vector i . The
0

0
1

vector 0 can be immediately ruled out.

0

The structure BL /2 BR in the above matrix is Bn_I.
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Because of Theorem B.2, the absolute values of the elements in BL

are identical to the absolute values of the elements BR. More-

over, since the elements of first row, that is, Ib l(y)l, increase

as y increases then for each column sum to the left oral//

there is a column sum to the right which exceeds it Therefore

Gmax must lie to the right.

As a result of Theorem B.2 and Lemma B.I, th¢re must be at

least two values of y where Gmax is attained. For an n stage

BR_, we will call the y value corresponding to Gmax on the left

of y = i000 . . . 00, Ln; and the one on the right of

y = i00 . . . 00, Rn.

Lemm_ B.2. For an n-stage BRM

ORn_l<Ln< 0 1 1 . . . i i

This result follows from the proof of Lemma B.I. Since the

first row Ib.l(y)I increasing then Gms_ must lie between the

right maximum of Bn.I and the rightmost value of I_mma B.I.

Lemma B.3 For an n-stage BRM

Ol 0 0 . . . O<Ln<Ol Ln.2_

Consider Bn for the values of y of Lemma B.I_ that is

OlO 0 . . . O<y<Oll . . . 1.
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1 2n'2 + ! -----------2n'2 + 2 . 1 1

-_- ,2n 2n ... _-
! 2n 2 . 1 2n'2 - 2

-'- '  'n-i  .n-1 . . . 0

1 "lh_.,2 "

o/
The sums of th_ abeolute value of the first two rows are

5 _n-i + _.n-2 . i 2n'l + 2n'2 - 2

._'t.......2n , 2n ........., • • •

T_:eE.f_re, this is a decreasing sequon.ce. Since "12__-Theorem B.2 and

L_ B.I: Bn.2 attair_s at a maximum for_at least: _WO values,then

Gms_: must lie between the leftmost value of Lemma B.I and 01Ln.2,

Th.sorem B.5. _cr an n-stage _M

ORn.1 <T__<_ol_n-2

i_is _heorem is the comb! _.on of Lemma B.2 and Lem_ "}'.3.

l_eore_, ._.4. Rn and Ln are unique and 0Rn-i = Ln = "_ '-%-2"

This theorem follows immediat,.,y from the proofs o:_ L .r_maB.2

, and Lemma B.5 by uBing %he principle of stzcng, induc-;.':,._s the

method Of proof; that is, assume it is true for k < n and prove

for the case k = n.

The values of y where Gmax is attained can be found by

using Theorem B.4. These values are listed in Table B.1.
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TABLE B.I VALUES OF y _ Gmax IS ATTAINED

OiLn. 2 ORn_l Ln Rn

Y-I'°'Y-6 Y.I'..Y. 6 Y.I..'Y, 6 Y.!...Y, 6

i 1 1>.' Ol ii
5 011 011 011 i01
4 0101 01-01 0101 i01._

5 i01011 01011 01011 i01016 010101 010101 010101 !0i011

The _M counter value and starting value corresponding to the

y values listed in Table B.i can be obtained by Theorem B.i. These

values are tabulated in Table 2.6.

An equation for Gmax as a function of n may be obtained bY

a procedure similar to that used to obt_, Emax. In particular,

using the pattern estaolished above a difference equation may be : " .-

written for n even, and a difference equation may _-e wrigten for
l

n odd. Combining the solutions Of these difference .eq_.tlon_, _..

Gmax may be obtained as a function of n. .

i n _ -_. (B.½)
Gmax(n) =g + E " 9"2n .....

_':....'_ Notirgg the similarity between the rlghtmost term of Eq. (2.15): :-
_.-.__, _ .-:

to that of Eq. (2.12),_ one may establish imme_ateiy-._..minlm_m error. ._--

bound when the B_4 counter starts with an_rbltrary value. ,-,.:

i0 n " (-i)n " •_ - _
Hmin(n) >_ -_-.- g +_ .... -. _.(.B.%O) .,,-.- :-.,

-- -9"2n . "..__ "-"• ' " "_":-:""T::IT!,

A tight error bound may be obtained as foilows: Exp_ndln_ ,_ ._ - _
. . .. _ ?_" _ • -':-

" Eq. (2.13)__then equation fo-' -H may be-expressed a_ : -: .-_ilili_!2i;ii-_!!i

" " " (_ll) '.: '::.;-.'---_-

• _ _ . .. - . ....__-.g_..." ...:..._
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xSR identifies the rightmost 1 in the initial value cf the

BRM counter. It may be simply argued that if a binary number has a

rightmost 1 _n pozition R the_. its 2's complement also has a 1 in

that position and, moreover, has zeros at all positions j where

j < R. Therefore, XSR = CSE and CSj = 0 for all J <R.

Eq. (B.JI) may be expresF_d as

-H-CsRY_R + IClb.l + C2b.2 +... + CR_lb_R+l]

+ (CR - CsR)h_ R + [(CR+I - CsR+l)b_p_ I + . . . + (Cn -CSn)b-n]

(B.12)

or alternately as

-H = Clb_I + C2b_2 + • • • + CRb_R + (CR+I - CSR+I)b_R_ I

. . . C I_- i +]
+ + (Cn - Csn)b-n + SR Y-R + [Y-R-1 + • " •

J

(B.I_)

Therefore

< IClb-11iCzb-2i+.. •+ j  b-Rl

+ I(CR+I - CSR+I)b_R_II + . . . + l(Cn - Csn)b_nl

+ CSR Y-R Y-R-I + • • (B.14)

_e upper bound of -H is attained when equality is attaized

in Eq. (B.14). It can be demonstrated by an argument similar to

that used in 'l_neoremB.10 that the conditions for equality are

Y_j = Cj for all j

and

= _ for all j > I_CSJ
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Therefore, Eq. (B.14) may be written as

C1

-H = (CI,C2,C3, . . .,Cn)M C2
C3

C5

+ c_ i CR + • • (B.15)

The last two terms in Eq. (B.I5) is always nonnegative.

Moreover, the sum of these two terms is nondecreasing as R de-

creases. Since by Theorem A.1, C1 = 1 is a conddtion for -aximiz-

ing the first term of Eq. (B.15), it muzt also be a condition for

maximizing Eq. (B.15) itself.

Eq. (B.11) may be rewritten with this condition as fc.l.low_

(B.I_)

Therefore, the equation fer I_in can be immediately

written as:

Hmin(n) - -1- Gmax(n-1) = lO n - 1 (-1)n (B.17)
"'9" - 3 9.2n'l
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_sed on this analysis CS1 , xSl _ CI, Xl, and Y-I are equal

to 1 for H_jn. The remaining stages are determined such as to

maximize G for an n - 1 stage BP&L &me values of y, C, and

CS where Hmin is attained are listed in Table B.3.

TABLE B.5 C,_y, IhND CS _.,qd_REHmin _ ATTAINED

i n Y-l"" "Y-6 C6" ""C1 CS6" ""CSI

2 ll . ll O1

5 lO1 i lO1 Oll

I 4 lOll llOl OOll
i

5 lOlO1 I lOlO1 OlOll

n Y-l" ""Y-6 C6" ""Cl CS6" ""CSl

2 ii !i Ol
5 Iii 13_I 001
4 ii01 1011 0101
5 ii011 ii011 00101
6 ii0101 101011 010101

• |

The BRM counter value and initial value for these Hmin

_alues are the 2's c_%oiement of the above numbers. "_nese values

are tabulated in Table Z.7.
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